
Asterisk - Advanced Configuration

SANOG12 VoIP Workshop
Kathmandu, August 2008

Jonny Martin - jonny@jonnynet.net
Vicky Shrestha - vicky@pch.net

mailto:jonny@jonnynet.net
mailto:jonny@jonnynet.net
mailto:vicky@pch.net
mailto:vicky@pch.net

Variable Expressions

• Variables used to

• reduce configuration complexity

• add clarity

• provide additional dialplan logic

• Basic expressions allow us to perform basic mathematical calculations

exten => 501,1,Set(Count=1)
exten => 501,2,Set(Newcount=$[${Count}+1])
exten => 501,3,SayNumber(${NewCount})

Substrings

• ${variable:offset:length}

• Returns the substring of ‘variable’ of length ‘length’, starting at offset

• Commonly used to strip access codes

• exten => 1X.,1,Dial(SIP/${EXTEN:1})

• Dials the extension minus the initial ‘1’

• If ‘length’ is omitted, the rest of the string is returned

• To concatenate two strings, simply write them together:

• ${string1}${string2}

Variable Operators

• Boolean operators (non-zero = true, zero=false)

• Or - var1 | var2

• And - var1 & var2

• Comparisons - var1 {=, >, >=, <, <=, !=} var2

• Mathematical operators

• Addition and subtraction - var1 {+, -} var2

• Multiplication, integer division, remainder - var1 {*, /, %} var2

Dialplan Functions

• Basic syntax:

• FUNTION_NAME(argument)

• To reference the value of a function

• ${FUNCTION_NAME(argument)}

• can be nested, i.e. ‘argument’ above replaced with another function
reference

• Used for string manipulation

Dialplan Functions

• exten => 502,1,Set(TEST=example)
exten => 502,2,SayNumber(${LEN(${TEST})})

• Len() returns the length of a string

• Many more...

Functions

*CLI> show functions
Installed Custom Functions:
--
URIENCODE URIENCODE(<data>) Encodes a string to URI-
safe encoding.
URIDECODE URIDECODE(<data>) Decodes an URI-encoded
string.
SQL_ESC SQL_ESC(<string>) Escapes single ticks for
use in SQL statements
ODBC_PRESENCE ODBC_PRESENCE(<arg1>[...[,<argN>]]) Runs the referenced
query with the specified arguments
ODBC_ANTIGF ODBC_ANTIGF(<arg1>[...[,<argN>]]) Runs the referenced
query with the specified arguments
ODBC_SQL ODBC_SQL(<arg1>[...[,<argN>]]) Runs the referenced
query with the specified arguments
TXTCIDNAME TXTCIDNAME(<number>) TXTCIDNAME looks up a
caller name via DNS
ENUMLOOKUP ENUMLOOKUP(number[,Method-type[,opt ENUMLOOKUP allows for
general or specific querying of NAPTR records or counts of NAPTR types for ENUM or
ENUM-like DNS pointers
CALLERID CALLERID(datatype) Gets or sets Caller*ID
data on the channel.
ARRAY ARRAY(var1[,var2[...][,varN]]) Allows setting multiple

Asterisk Database

• astdb - simple database forms part of Asterisk

• Dial plan and CLI can insert and remove data

• Data stored in a file, so is retained across Asterisk reloads and server reboots

• Data stored in groupings of families containing keys

• exten => s,1,Set(DB(family/key)=${some_variable})

• exten => s,1,Set(DB(system/nightmode_on)=1)

• exten => s,1,Dial(${DB(exten/${EXTEN}/dial_string)},15)

Asterisk Database - Example

; start counting and store count progress in astdb

; check if DB key exists, if not, jump to key_no_exist
; function DB_Exists returns 1 if the key exists, 0 if not
exten => 30,1,GotoIf(DB_Exists(test/count)?key_no_exist)

; begin the counting!
exten => 30,n(start),Set(COUNT=${DB(test/count)})
exten => 30,n,SayNumber(${COUNT})
exten => 30,n,Set(COUNT=$[${COUNT} + 1])
; update the DB
exten => 30,n,Set(DB(test/count)=${COUNT})
exten => 30,n,Goto(start)

; if we got here it is because the key didn’t exist in the DB
; create the key
exten => 30,n(key_no_exist),Set(DB(test/count)=1)
; and jump back to the start to begin counting
exten => 30,n,Goto(start)

GotoIf

; GotoIf(condition?label1[:label2])
;
; Go to label1 if condition is true or to next step (or label2 if defined) if
condition is false, or
;
; GotoIf(condition?[label1]:label2)
;
; Go to next step (or label1 if defined) if condition is true or to label2 if
condition is false.

Macros

• Avoids repetition in the dial plan

• Akin to building a function in the dial plan

• Useful for building standard phone dialling logic

• Uses extra specific channel variables:

${ARGn}: The nth argument passed to the macro
${MACRO_CONTEXT}: Context of the extension that triggered this macro
${MACRO_EXTEN}: The extension that triggered this macro
${MACRO_PRIORITY}: The priority in the extension where this macro was
triggered

Macro Example

[macro-stdexten]

;
; Standard extension macro:
; ${ARG1} - Extension (we could have used ${MACRO_EXTEN} here as well
; ${ARG2} - Device(s) to ring
;
; ring the interface for 20sec max
exten => s,1,Dial(${ARG2},20)
; jump based on status (NOANSWER,BUSY,CHANUNAVAIL,CONGESTION,ANSWER)
exten => s,2,Goto(s-${DIALSTATUS},1)

exten => s-NOANSWER,1,Voicemail(u${ARG1}) ; If unavailable, send to voicemail
exten => s-NOANSWER,2,Goto(default,s,1) ; If they press #, return to start

exten => s-BUSY,1,Voicemail(b${ARG1}) ; If busy, send to voicemail w/ busy
announce
exten => s-BUSY,2,Goto(default,s,1) ; If they press #, return to start

exten => _s-.,1,Goto(s-NOANSWER,1) ; Treat anything else as no answer

exten => a,1,VoicemailMain(${ARG1}) ; If they press *, send to VoicemailMain

AGI Scripts

• Asterisk Gateway Interface

• Dial plan can call Perl, Python, PHP scripts

• AGI script reads from STDIN to get information from Asterisk

• AGI script writes data to STDOUT to send information to Asterisk

• AGI script can write to STDERR to send debug information to the console

• Scripts stored in /usr/share/asterisk/agi-bin/ on Debian

• exten => 520,1,AGI(/path/to/agi-script.agi)

AGI Scripts

• Very very powerful

• A2Billing uses them to implement a complete billing system

• All the relevant call data is sent to the AGI

• MySQL lookups performed

• Relevant dial command returned to Asterisk

• Database updated at end of call

Agents

• Users can log in as an Agent

• Maps current extension to that user’s Agent

• Agent can then be logged into queues

• Agents can log in / out at will, follow-me functionality

• Agents functionality still quite buggy - best not to use for anything complex

agents.conf

/etc/asterisk/agents.conf

[general]
; Define whether callbacklogins should be stored in astdb for persistence
persistentagents=yes

[agents]
;autologoff=15 ; time (s) before agent auto logoff if no answer
;ackcall=no
wrapuptime=1000
;musiconhold => default
;updatecdr=no
; Enable recording calls addressed to agents. It's turned off by default.
recordagentcalls=yes
;recordformat=gsm

; agent => agentid,agentpassword,name
group=1 ; Junior NOC staff
agent => 600,1234,Lilly

group=2 ; Senior NOC staff
agent => 610,1234,Steve

Queues

• Reasonably powerful queuing support within Asterisk

• Queues can have static or dynamic members

• Members can be channels, or Agents

• Automatic distribution of calls based on queue strategy

queues.conf

/etc/asterisk/queues.conf

[general]
; Store each dynamic agent in each queue in the astdb for persistence
persistentmembers = yes

; Queue(queuename|[options]|[optionalurl]|[announceoverride]|[timeout])
; example: Queue(dave|t|||45)

[noc]
musiconhold = default
strategy = ringall ; ringall, roundrobin, leastrecent, fewest calls, random, rrmemory

servicelevel = 30 ; SLA setting (s). stats for calls answered in this time
timeout=15 ; How long the phone rings before it's considered a timeout
retry=0 ; How long do we wait before trying all the members again?
; Weight of queue - when compared to other queues, higher weights get preference
weight=2
wrapuptime=5 ; how long before sending agent another call
maxlen = 0 ; of queue, 0 for no maximum

; How often to announce queue position and/or estimated holdtime to caller (0=off)
announce-frequency = 0
;announce-holdtime = yes|no|once
;announce-round-seconds = 10
; How often to make any periodic announcement (see periodic-announce)
;periodic-announce-frequency=60

Queuing Example

; Using Agents
; agent login to helpdesk queue
exten => *4,1,Answer()
exten => *4,n,AddQueueMember(noc|Agent/${CALLERID(NUM)})
exten => *4,n,AgentCallbackLogin(${CALLERID(NUM)}||q${CALLERID(NUM)}@sip)
exten => *4,n,Hangup()

; agent logout from noc queue
; note # is sent through by as a %23 in some sip headers
; so may need to repeat with exten => %23
exten => #4,1,Answer()
; send trigger to flash panel
exten => #4,n,System(/usr/sbin/asterisk -rx "agent logoff Agent/${CALLERID(NUM)}")
exten => #4,n,RemoveQueueMember(noc|Agent/${CALLERID(NUM)})
exten => #4,n,Playback(agent-loggedoff)
exten => #4,n,Hangup

; Or, using dynamic login of channel instead of agents, doesn't send triggers to flash panel
exten => *4,1,Answer()
exten => *4,n,AddQueueMember(noc|${CALLERID(NUM)})
exten => *4,n,Playback(logged-in)
exten => *4,n,Hangup()

exten => #4,n,RemoveQueueMember(noc|${CALLERID(NUM)})
exten => #4,n,Playback(agent-loggedoff)
exten => #4,n,Hangup

Festival	

• Festival - Open sources text to speech engine

• http://www.cstr.ed.ac.uk/projects/festival/

• Text to speech is a bit rough, but useable

• Easy to use once installed

• Useful for putting together quick IVRs

exten => 1,1,Festival('Record your message now')
exten => 1,n,Record(filename:alaw)
exten => 1,n,Festival('You recorded')
exten => 1,n,Playback(filename)
exten => 1,n,Festival('message saved.')
exten => 1,n,Goto(s,1)

Lab 3: Advanced Asterisk Configuration

Asterisk CLI

• Should be quite familiar with it by now

• Can run remote Asterisk CLI commands from server

• asterisk -rx “sip reload”

• Primarily useful for triggering reloads and setting DB keys

Asterisk Manager API

• Allows client programs to connect to Asterisk

• Issues commands and reads events

• Used by Flash Operator Panel to keep track of Asterisk’s state

• Telnet to the listening TCP/IP port (5038 by default)

• Login checked against credentials in manager.conf

• Specific message types subscribed to in manager.conf

Asterisk Manager API Commands

 Action Privilege Synopsis
 ------ --------- --------
 AbsoluteTimeout call,all Set Absolute Timeout
 AgentCallbackLo agent,all Sets an agent as logged in by callback
 AgentLogoff agent,all Sets an agent as no longer logged in
 Agents agent,all Lists agents and their status
 ChangeMonitor call,all Change monitoring filename of a channel
 Command command,all Execute Asterisk CLI Command
 DBGet system,all Get DB Entry
 DBPut system,all Put DB Entry
 Events <none> Control Event Flow
 ExtensionState call,all Check Extension Status
 Getvar call,all Gets a Channel Variable
 Hangup call,all Hangup Channel
 IAXnetstats <none> Show IAX Netstats
 IAXpeers <none> List IAX Peers
 ListCommands <none> List available manager commands
 Logoff <none> Logoff Manager
 MailboxCount call,all Check Mailbox Message Count
 MailboxStatus call,all Check Mailbox
 Monitor call,all Monitor a channel
 Originate call,all Originate Call
 ParkedCalls <none> List parked calls

Asterisk Performance

• Performance heavily dependant on what your Asterisk server is doing

• ‘Switching’ calls - can easily get up to ~200 calls/sec

• Terminating media streams - around 30 simultaneous calls on a fast server

• Codecs - low bitrate codecs typically require a lot of CPU

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 2: Preparing a System for Asterisk

and the like. The symptoms will resemble those experienced on a cell phone when
going out of range, although the underlying causes will be different. As loads
increase, the system will have increasing difficulty maintaining connections. For a
PBX, such a situation is nothing short of disastrous, so careful attention to perfor-
mance requirements is a critical consideration during the platform selection process.

Table 2-1 lists some very basic guidelines that you’ll want to keep in mind when
planning your system. The next section takes a close look at the various design and
implementation issues that will affect its performance.

With large Asterisk installations, it is common to deploy functionality across several
servers. One or more central units will be dedicated to call processing; these will be
complemented by one or more ancillary servers handling peripherals (such as a data-
base, voicemail, conferencing, management, a web interface, a firewall, and so on).
As is true in most Linux environments, Asterisk is well suited to growing with your
needs: a small system that used to be able to handle all your call-processing and
peripheral tasks can be distributed between several servers when increased demands
exceed its abilities. Flexibility is a key reason why Asterisk is extremely cost-effective
for rapidly growing businesses—there is no effective maximum or minimum size to
consider when budgeting the initial purchase. While some scalability is possible with
most telephone systems, we have yet to hear of one that can scale as inexpensively as
Asterisk. Having said that, distributed Asterisk systems are not simple to design—
this is not a task for someone new to Asterisk.*

Server Hardware Selection
The selection of a server is both simple and complicated: simple because, really, any
x86-based platform will suffice; but complicated because the reliable performance of
your system will depend on the care that is put into the platform design. When

Table 2-1. System requirement guidelines

Purpose Number of channels Minimum recommended

Hobby system No more than 5 400-MHz x86, 256 MB RAM

SOHOa system

a Small Office/home Office—less than three lines and five sets.

5 to 10 1-GHz x86, 512 MB RAM

Small business system Up to 15 3-GHz x86, 1 GB RAM

Medium to large system More than 15 Dual CPUs, possibly also multiple servers
in a distributed architecture

* If you are sure that you need to set up a distributed Asterisk system, you will want to study the DUNDi pro-
tocol. You should probably get the interest of the Asterisk-Users mailing list as well, but be sure to wear your
flame-retardant suit; for some reason, this subject can spur a heated (but generally very educational) debate.

,ch02.20169 Page 10 Wednesday, August 31, 2005 4:54 PM

