Network Infrastructure for Critical DNS

Steve Gibbard http://www.stevegibbard.com scg@stevegibbard.com

Introduction

• Mixing two talks: Infrastructure Distribution Where are DNS servers for ccTLDs? **ODNS** network architecture Where and how should name servers be connected? • Focusing on network infrastructure ⊙Lots of important stuff happens on the servers too, but that's not my area.

DNS is critical infrastructure

 Without DNS, nothing else works.
 Authoritative DNS needs to be as reliable as the most reliable parts of the network.

ODNS is a hierarchy. For a domain name to work, its servers and those for all zones above it must be reachable.

Reliability is best dose to authoritative servers

• There's less to break between the server and the user.

• Response times are faster.

gTLDs Focus Mostly on Core

ccTLDs are location-based

They're depended on by users in their countries.
They may be used in neighboring/trading partner countries.
People outside may not care much.
It's somewhat obvious where they should be reliable.
Local root servers are needed too.

Network partitions

In a network partition, it's good if local stuff keeps working.
 In satellite-connected regions, international connectivity breaks frequently.
 Outages are rarer in fiber-connected regions, but last longer.
 Local phone calls work without international

connectivity. Local Internet should too.

DNS look-ups around the world

Pakistan and .PK
Root look-ups handled locally, but ccTLD look-up are handled in the US.
Karachi has a root server.
.PK in UUNet and ev1Servers networks in US.
Kenya and .KE
Root and TLD look-ups are handled locally.
Nairobi has multiple root servers.
.KE is hosted in Kenya and elsewhere.

Notable incidents

• Sri Lanka (2004) International fiber was cut in Colombo harbor. OPress reports described an outage of "Internet and long distance phone service." ⊙ccTLD hosted locally, but no root server. OBurma/Myanmar (2007) ⊙International connectivity was cut off by the government. ⊙Local connectivity kept working. •.MM worked inside but not outside.

Root Server Coverage

ccTLD Distribution:

Just over 2/3 of ccTLDs are hosted in their own countries.
 (but a lot of those that aren't are for really tiny countries).

Countries with local ccTLDs (green) old data

ccTLDs not hosted in core (old data)

- .AX -- Aland Islands
- .BB -- Barbados
- O.BH -- Bahrain
- .CK -- Cook Islands
- .CN -- China
- O.EC -- Ecuador
- .GF -- French Guiana
- .KW -- Kuwait
- MP -- Northern Marian
 Islands
 List used to ind

- MQ -- Martinique.NF -- Norfolk Island
- .PA -- Panama
- .PF -- French Polynesia
- .QA -- Qatar
- .SR -- Suriname9
- .TJ -- Tajikistan
 - .YE -- Yemen
 - List used to include .BD -Bangladesh -- Now fixed.

Building DNS infrastructure

Goals
How to build it
Topology
Redundancy

Goals

Who are you trying to serve?
Local users?
Users in other local areas?
The rest of the Internet?
Your region's topology:
Is everything well-connected, or a bunch of "islands?"
Servers in central location, or lots of places?

Whose infrastructure?

• Your own? • Somebody else's? • Free global anycast services for ccTLDs provided by ISC, PCH, others • Several commercial anycast operators ●Lots of free unicast options • Easy way to get large-scale global-build • Mixture? •Your own servers in areas that matter most to you Somebody else's global footprint

Where to put the servers

In country At a central location -- an exchange point? One in each ISP? At a common uplink location (like Miami for Latin America)? In the rest of the world: At major Internet hubs? At the other end of your ISPs' international links?

Unicast/anycast:

This is mostly an issue of scale.
For small numbers of servers, unicast works well.

 Anycast is required for larger numbers of servers.

Anycast topology – keeping traffic local

 Backbone engineers are often good at keeping local traffic local.

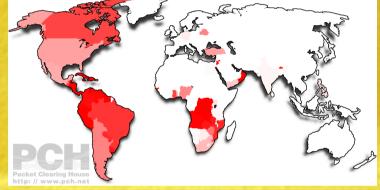
Use consistent peering/transit, hot potato routing.
Unicast operators don't need to think about this.

- Anycast DNS operators aren't so good at this.
 OAnycast looks like a backbone.
 - OPlugging servers into random networks is done in pursuit of network diversity.
 - ONetworks send traffic to customers first, regardless of geography.

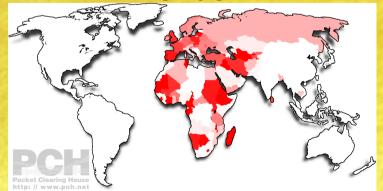
J-Root in Bay Area

 There are local J-Root servers in Mountain View and San Francisco.
 Queries from 3 Bay Area hosts are responded to by:
 jins2-kr
 jluepe2-elmad1
 jins2-elyyz

Anycast can keep traffic local


Olf designed like a backbone.
Oconsistent transit should be gotten from global ISPs.
OPeering only locations are good too, but peer with peers in all areas of overlap.
ONo transit from non-global providers.:
OInsist on being treated like a peer.

Queries with consistent transit


Palo Alto

Ashburn

London

Hong Kong

Redundancy

• More servers are better than fewer, if they're manageable. • There's no contradiction between using your own servers and outsourcing. • Monitoring: Ocheck zone serial numbers on all servers frequently. ⊙ If using anycast, monitor individual unicast management addresses.

Further reading

ONS infrastructure distribution http://www.stevegibbard.com/dns-distribution-ipj.pdf Observations on anycast topology and performance.

O http://www.stevegibbard.com/anycast-performance.pdf

Thanks!

Steve Gibbard http://www.stevegibbard.com scg@stevegibbard.com