DNS Security : DNSSEC Deployment

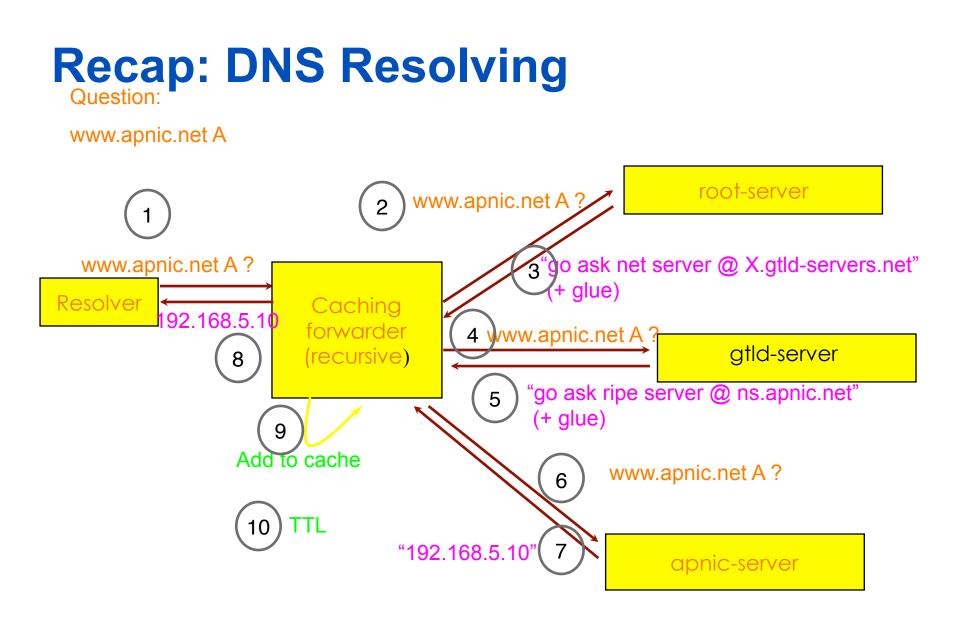
July 15, 2012, Karachi, Pakistan

In conjunction with

APNIC

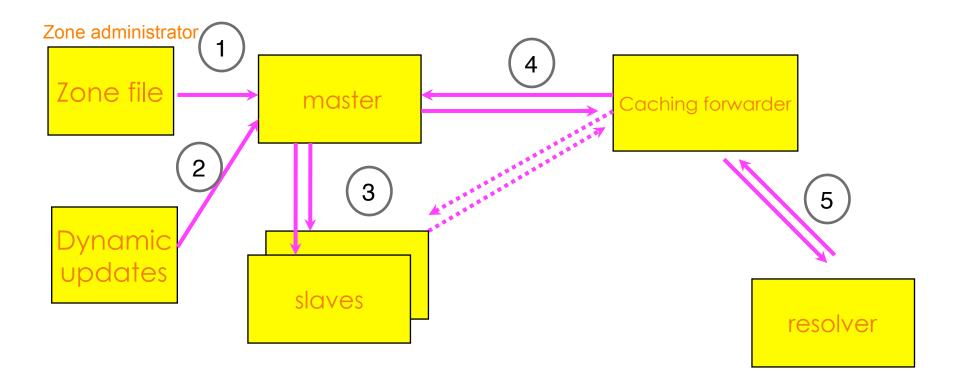
Presenters

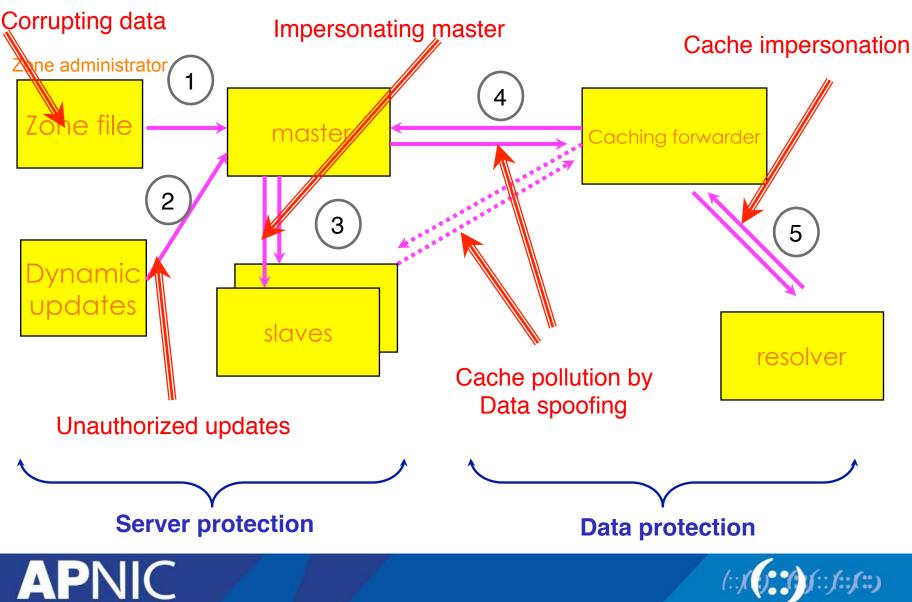
- Champika Wijayatunga
 - Training Unit Manager, APNIC
 - champika@apnic.net
- Vivek Nigam
 - Internet Resource Analyst, APNIC
 - vivek@apnic.net

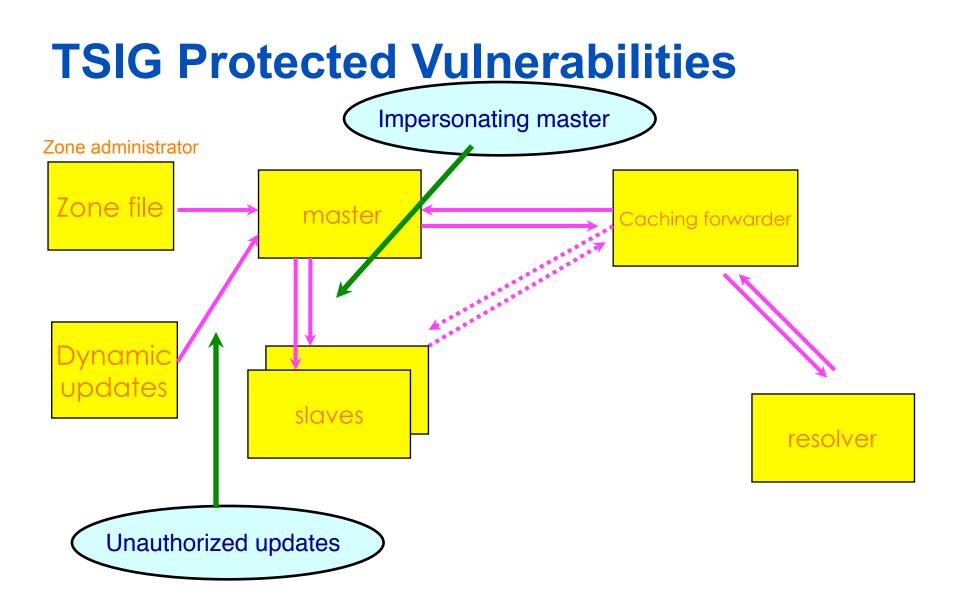


Background - Why DNSSEC?

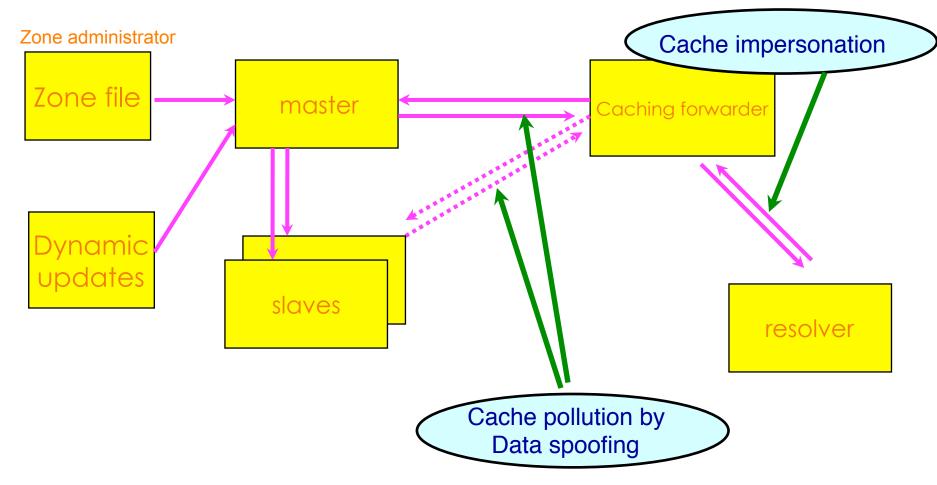
- The original DNS protocol wasn't designed with security in mind
- It has very few built-in security mechanism
- As the Internet grew it was realized that DNS spoofing was to easy
- DNSSEC and TSIG were develop to help address this problem




DNS: Data Flow



DNS Vulnerabilities



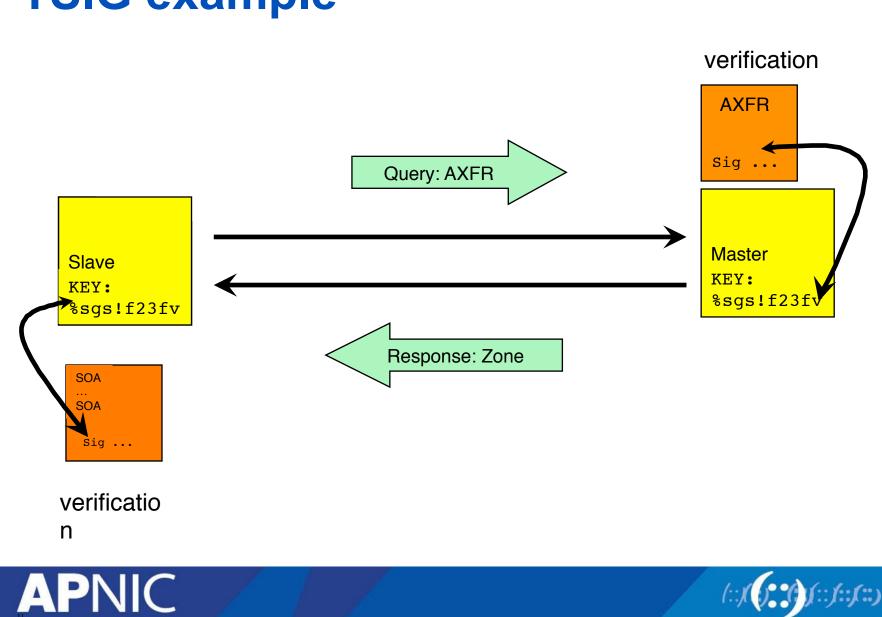
Vulnerabilities protected by DNSKEY / RRSIG / NSEC

(::,(::.)

What is TSIG - Transaction Signature?

 A mechanism for protecting a message from a primary to secondary and vice versa

- A keyed-hash is applied (like a digital signature) so recipient can verify message
 - DNS question or answer
 - & the timestamp
- Based on a shared secret both sender and receiver are configured with it



What is TSIG - Transaction Signature?

- TSIG (RFC 2845)
 - authorizing dynamic updates & zone transfers
 - authentication of caching forwarders
- Used in server configuration, not in zone file

TSIG example

TSIG steps

- 1. Generate secret
- 2. Communicate secret
- 3. Configure servers
- 4. Test

TSIG - Names and Secrets

- TSIG name
 - A name is given to the key, the name is what is transmitted in the message (so receiver knows what key the sender used)

- TSIG secret value
 - A value determined during key generation
 - Usually seen in Base64 encoding

TSIG – Generating a Secret

- dnssec-keygen
 - Simple tool to generate keys
 - Used here to generate TSIG keys
 - > dnssec-keygen -a <algorithm> -b <bits> -n host
 <name of the key>

TSIG – Generating a Secret

- Example
 - > dnssec-keygen -a HMAC-MD5 -b 128 -n HOST ns1ns2.pcx.net

This will generate the key > Kns1-ns2.pcx.net.+157+15921

>ls
> Kns1-ns2.pcx.net.+157+15921.key
> Kns1-ns2.pcx.net.+157+15921.private

TSIG – Generating a Secret

- TSIG should never be put in zone files!!!
 - might be confusing because it looks like RR:

ns1-ns2.pcx.net. IN KEY 128 3 157 nEfRX9...bbPn7lyQtE=

TSIG – Configuring Servers

- Configuring the key
 - in named.conf file, same syntax as for rndc
 - key { algorithm ...; secret ...;}
- Making use of the key
 - in named.conf file
 - server x { key \ldots ; }
 - where 'x' is an IP number of the other server

Configuration Example – named.conf

Primary server 10.33.40.46

Secondary server 10.33.50.35

```
key ns1-ns2.pcx.net {
    algorithm hmac-md5;
    secret "APlaceToBe";
};
                                  };
server 10.33.50.35 {
    keys {ns1-ns2.pcx.net;};
};
                                  };
zone "my.zone.test." {
   type master;
    file "db.myzone";
    allow-transfer {
   key ns1-ns2.pcx.net;};
                                  };
};
```

```
key ns1-ns2.pcx.net {
    algorithm hmac-md5;
    secret "APlaceToBe";
};
server 10.33.40.46 {
    keys {ns1-ns2.pcx.net;};
};
;
zone "my.zone.test." {
    type slave;
    file "myzone.backup";
    masters {10.33.40.46;};
};
```

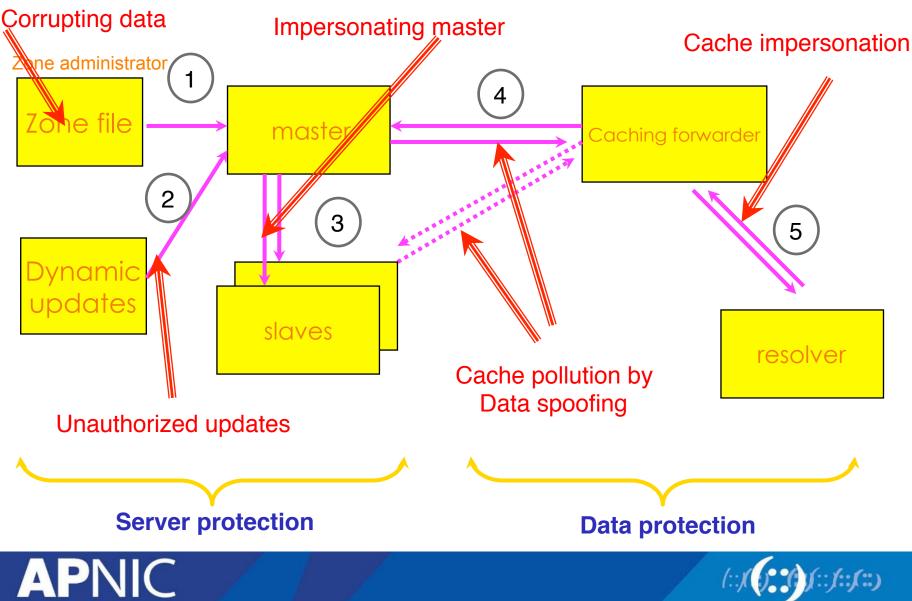
You can save this in a file and refer to it in the named.conf using 'include' statement:

include "/var/named/master/tsig-key-ns1-ns2";

TSIG Testing : dig

- You can use dig to check TSIG configuration
 - dig @<server> <zone> AXFR -k <TSIG keyfile>

- \$ dig @127.0.0.1 example.net AXFR \
 -k Kns1-ns2.pcx.net.+157+15921.key
- Wrong key will give "Transfer failed" and on the server the security-category will log this.

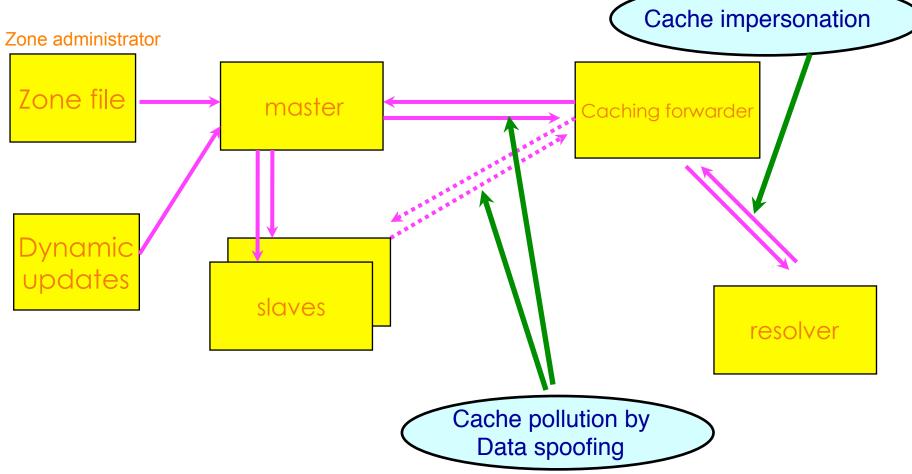

TSIG Testing - TIME!

- TSIG is time sensitive to stop replays
 - Message protection expires in 5 minutes
 - Make sure time is synchronized
 - For testing, set the time
 - In operations, (secure) NTP is needed

DNS Vulnerabilities

DNSSEC mechanisms

- TSIG: provides mechanisms to authenticate communication between servers
- DNSKEY/RRSIG/NSEC: provides mechanisms to establish authenticity and integrity of data
- DS: provides a mechanism to delegate trust to public keys of third parties
- A secure DNS will be used as an infrastructure with public keys


DNSSEC mechanisms

- Key pair
 - A private(secret) key and a corresponding public key
- In DNSSEC,
 - If you know the public key, you can verify a signature created with the private key
 - Only uses signatures
- Public Key Crypto
 - If you know the public key, you can encrypt data that can only be decrypted with the private key

Vulnerabilities protected by DNSKEY / RRSIG / NSEC

Authenticity and Integrity

- Authenticity
 - Is the data published by the entity we think is authoritative
- Integrity
 - Is the data received the same as what was published?
- Islands of security
 - We cannot expect that every name server in the world would configure to support DNSSEC and every zone is secured
 - Security aware name servers and Security not aware name servers

Publishing keys

- A zone is signed using its private key
- Receiving name server must have access to zone's public key in order to perform the security verification
- How to obtain public key
 - Publish the public key using DNSKEY RR in the zone file
 - Obtain the key using out of band process
 - Trusted anchor (defined using *trusted-keys* statement in config file)

New Resource Records

- 3 Public key crypto related RRs
 - RRSIG
 - Signature over RRset made using private key
 - DNSKEY
 - Public key, needed for verifying a RRSIG
 - DS
 - Delegation Signer; 'Pointer' for building chains of authentication
- One RR for internal consistency
 - NSEC
 - Indicates which name is the next one in the zone and which typecodes are available for the current name
 - authenticated non-existence of data

RR's and RRsets

- Resource Record:
 - Name TTL class type rdata
 www.example.net. 7200 IN A 192.168.1.1

• RRset: RRs with same name, class **and** type:

www.example.net.	7200	IN	A	192.168.1.1	
		A	10.0.	10.0.3	
		A	172.1	0.1.1	

• RRsets are signed, not the individual RRs

DNSKEY RDATA

Example:

example.net. 3600 IN DNSKEY 256 3 5 (
 AQOvhvXXU61Pr8sCwELcqqq1g4JJ
 CALG4C9EtraBKVd+vGIF/unwigfLOA
 O3nHp/cgGrG6gJYe8OWKYNgq3kDChN)

RRSIG RDATA

example.net. 3600 IN RRSIG A 5 2 3600 (
20081104144523 20081004144523 3112 example.net. VJ
+8ijXvbrTLeoAiEk/qMrdudRnYZM1VlqhNvhYuAcYKe2X/
jqYfMfjfSUrmhPo+0/GOZjW66DJubZPmNSYXw==)

Delegation Signer (DS)

- Delegation Signer (DS) RR indicates that:
 - delegated zone is digitally signed
 - indicated key is used for the delegated zone

- Parent is authorative for the DS of the childs zone
 - Not for the NS record delegating the childs zone!
 - DS should not be in the childs zone

DS RDATA

\$ORIGIN .net.

NSEC RDATA

- Points to the next domain name in the zone
 - also lists what are all the existing RRs for "name"
 - NSEC record for last name "wraps around" to first name in zone
- Used for authenticated denial-of-existence of data – authenticated non-existence of TYPEs and labels

NSEC Record example

\$ORIG	IN exan	mple.ne	t.				
@ SOA		•••					
	NS	NS.example.net.					
	DNSKEY						
	NSEC	mailb	ilbox.example.net. SOA NS NSEC DNSKEY RRSIG				
mailbo	OX	А	192.1	68.10.2			
			NSEC	www.example.net. A NSEC RRSIG			
WWW A 192.168.10.3		192.1	68.10.3				
			TXT	Public webserver			
			NSEC	example.net. A NSEC RRSIG TXT			

APNIC

Setting up a secure zone

Enable dnssec

• In the named.conf,

Creation of keys

- Zones are digitally signed using the private key
- Can use RSA-SHA-1, DSA-SHA-1 and RSA-MD5 digital signatures
- The public key corresponding to the private key used to sign the zone is published using a DNSKEY RR

Keys

- Two types of keys
 - Zone Signing Key (ZSK)
 - Sign the RRsets within the zone
 - Public key of ZSK is defined by a DNSKEY RR
 - Key Signing Key (KSK)
 - Signed the keys which includes ZSK and KSK and may also be used outside the zone
 - Trusted anchor in a security aware server
 - Part of the chain of trust by a parent name server
 - Using a single key or both keys is an operational choice (RFC allows both methods)

Creating key pairs

• To create ZSK

> dnssec-keygen -a rsasha1 -b 1024 -n zone champika.net

• To create KSK

> dnssec-keygen -a rsasha1 -b 1400 -f KSK -n zone champika.net

Publishing your public key

- Using \$INCLUDE you can call the public key (DNSKEY RR) inside the zone file
 - \$INCLUDE /path/Kchampika.net.+005+33633.key ; ZSK
 - \$INCLUDE /path/Kchampika.net.+005+00478.key; KSK

You can also manually enter the DNSKEY RR in the zone file

Signing the zone

> dnssec-signzone –o champika.net -t -k Kchampika.net.+005+00478 db.champika.net Kchampika.net.+005+33633

- Once you sign the zone a file with a .signed extension will be created
 - db.champika.net.signed

Testing the server

- Ask a dnssec enabled question from the server and see whether the answer contains dnssec-enabled data
 - Basically the answers are signed
- > dig @localhost www.champika.net +dnssec +multiline

Testing with dig: an example

AP

l	Terminal — bash — 144×46 st www.champika.net +dnssec +multiline	j.
; <<>> DiG 9.6.0-APPLE ; (3 servers found) ;; global options: +cm ;; Got answer: ;; ->>HEADER<<- opcode	-P2 <<>> @localhost www.champika.net +dnssec +multiline	
<pre>;; OPT PSEUDOSECTION: ; EDNS: version: 0, fl ;; QUESTION SECTION: ;www.champika.net.</pre>	ags: do; udp: 4096 IN A	
;; ANSWER SECTION: www.champika.net. www.champika.net.	86400 IN A 192.168.1.2 86400 IN RRSIG A 5 3 86400 20091123163643 (20091024163643 22827 champika.net. Eyp1IVyQyYBLK0X2u/LT1+40xjBomXzLrcdwSErgioMb pGyDWDLzP+FTbE3QCfBMLNDt2AGoYcty1cfY4li9sHkw fue6hTQTSm0LhisBkVKQBy6ZD5oGiJQgaIkBGmLtVkPh jGJ8Z1UhbwKcGGK13doAa+5X8mx6MXNCudiNWeg=)	
;; AUTHORITY SECTION: champika.net. champika.net.	86400 IN NS ns.champika.net. 86400 IN RRSIG NS 5 2 86400 20091123163643 (20091024163643 22827 champika.net. CZSPewlhPWpYTl&wPh09QhD6pWt0If2mLVshviGKq4no ISNVoijmX0LyIns+o3DZz/2+TtwoQCRFLbfI99YMS3fx BHGYqFDeGItyVx308pmTuAtMu2+od5WFS+LClsJsEP/N QvUDgtWrj8+Z0wVVj8aLe+I51h29ek7Mzk7+P4E=)	
;; ADDITIONAL SECTION: ns.champika.net. ns.champika.net.	86400 IN A 192.168.1.1 86400 IN RRSIG A 5 3 86400 20091123163643 (20091024163643 22827 champika.net. eTP05c4GscnoC9V5sR6vgDo02WgCr1T5arU7YZhWctXI vkmU1ni+wguwqW6xezfB/Eu4J69bMnpQoX2zWUDtLUCM +FVLsFx4Bbt+BjPEJKW03g9vv6IdKkR/pxyE1kJWJWmI tR49P2dywlzqqTyvnj3F1yuFRTLHhJvfcVc+n8W=)	
;; Query time: 3 msec ;; SERVER: 127.0.0.1#5 ;; WHEN: Sun Oct 25 03 ;; MSG SIZE rcvd: 610	:40:38 2009	

Questions?

APNIC

Thank You! ③

<champika@apnic.net>

