BGP Multihoming Tutorial SANOG 22 4th August 2014

Srinath Beldona
Senior Technical Consultant
srinath@apnic.net

Agenda

- Simple Multihoming
- Service Provider Multihoming
- Conclusion

Simple Multihoming

SANOG 24

- Redundancy
 - One connection to internet means the network is dependent on:
 - Local router (configuration, software, hardware)
 - WAN media (physical failure, carrier failure)
 - Upstream Service Provider (configuration, software, hardware)

- Reliability
 - Business critical applications demand continuous availability
 - Lack of redundancy implies lack of reliability implies loss of revenue

- Supplier Diversity
 - Many businesses demand supplier diversity as a matter of course
 - Internet connection from two or more suppliers
 - With two or more diverse WAN paths
 - With two or more exit points
 - With two or more international connections
 - Two of everything

- Not really a reason, but often quoted...
- Leverage:
 - Playing one ISP off against the other for:
 - Service Quality
 - Service Offerings
 - Availability

- □ Summary:
 - Multihoming is easy to demand as requirement of any operation
 - But what does it really mean:
 - In real life?
 - For the network?
 - For the Internet?
 - And how do we do it?

Multihoming Definition

- More than one link external to the local network
 - two or more links to the same ISP
 - two or more links to different ISPs
- Usually two external facing routers
 - one router gives link and provider redundancy only

Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs
- Implementation detail may be different
 - end site → ISP ISP controls config
 - ISP1 → ISP2 ISPs share config

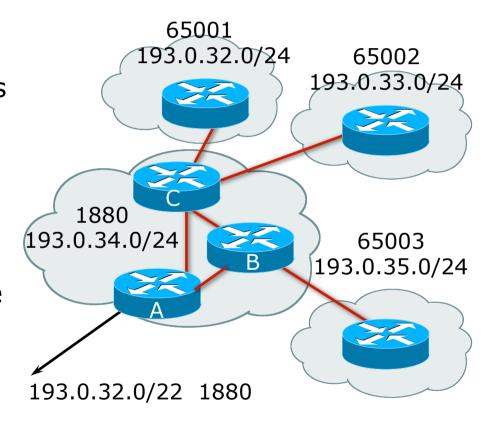
Autonomous System Number (ASN)

```
Two ranges
   0-65535
                            (original 16-bit range)
                            (32-bit range – RFC6793)
   65536-4294967295
Usage:
   0 and 65535
                            (reserved)
                            (public Internet)
   1-64495
                            (documentation - RFC5398)
   64496-64511
                            (private use only)
   64512-65534
                            (represent 32-bit range in 16-bit world)
   23456
   65536-65551
                            (documentation - RFC5398)
                            (public Internet)
   65552-4199999999
   420000000-4294967295 (private use only)
  32-bit range representation specified in RFC5396
```

Defines "asplain" (traditional format) as standard notation

Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN allocations up to 63487 have been made to the RIRs
 - Around 44500 are visible on the Internet
 - Around 1500 left unassigned
- Each RIR has also received a block of 32-bit ASNs
 - Out of 4800 assignments, around 3700 are visible on the Internet
- See www.iana.org/assignments/as-numbers


Private-AS – Application

Applications

- An ISP with customers multihomed on their backbone (RFC2270)
 -or-
- A corporate network with several regions but connections to the Internet only in the core

-or-

Within a BGP Confederation

Private-AS – Removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 - Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 - They should not be leaked to the public Internet
- □ Cisco IOS

neighbor x.x.x.x remove-private-AS

Transit/Peering/Default

Transit

- Carrying traffic across a network
- Usually for a fee

Peering

- Exchanging locally sourced routing information and traffic
- Usually for no fee
- Sometimes called settlement free peering

Default

Where to send traffic when there is no explicit match in the routing table

Configuring Policy

- Assumptions:
 - prefix-lists are used throughout
 - easier/better/faster than access-lists
- □ Three BASIC Principles
 - prefix-lists to filter prefixes
 - filter-lists to filter ASNs
 - route-maps to apply policy
- Route-maps can be used for filtering, but this is more "advanced" configuration

Policy Tools

- Local preference
 - outbound traffic flows
- Metric (MED)
 - inbound traffic flows (local scope)
- AS-PATH prepend
 - inbound traffic flows (Internet scope)
- Communities
 - specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes reachability is not guaranteed
- Current minimum allocation is from /20 to /24 depending on the RIR
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called "Net Police" by some

Originating Prefixes

■ The RIRs publish their minimum allocation sizes per /8 address block

AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm

APNIC: www.apnic.net/db/min-alloc.html

ARIN: www.arin.net/reference/ip_blocks.html

LACNIC: lacnic.net/en/registro/index.html

RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html

- Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks
- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 - www.iana.org/assignments/ipv4-address-space
- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs

"Net Police" prefix list issues

- Meant to "punish" ISPs who pollute the routing table with specifics rather than announcing aggregates
- Impacts legitimate multihoming especially at the Internet's edge
- Impacts regions where domestic backbone is unavailable or costs \$\$\$ compared with international bandwidth
- Hard to maintain requires updating when RIRs start allocating from new address blocks
- Don't do it unless consequences understood and you are prepared to keep the list current
 - Consider using the Team Cymru or other reputable bogon BGP feed:
 - www.team-cymru.org/Services/Bogons/routeserver.html

How to Multihome

Some choices...

Transits

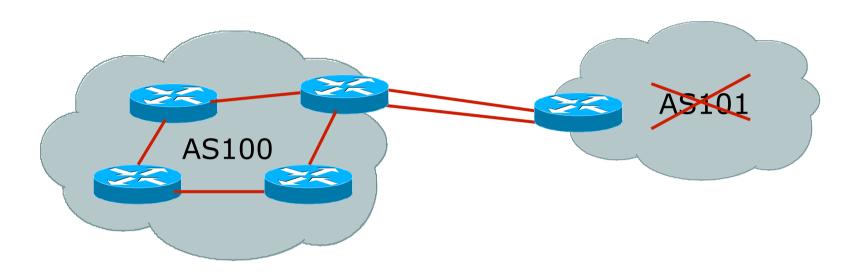
- Transit provider is another autonomous system which is used to provide the local network with access to other networks
 - Might be local or regional only
 - But more usually the whole Internet
- Transit providers need to be chosen wisely:
 - Only one
 - no redundancy
 - Too many
 - more difficult to load balance
 - no economy of scale (costs more per Mbps)
 - hard to provide service quality
- Recommendation: at least two, no more than three

Common Mistakes

- ISPs sign up with too many transit providers
 - Lots of small circuits (cost more per Mbps than larger ones)
 - Transit rates per Mbps reduce with increasing transit bandwidth purchased
 - Hard to implement reliable traffic engineering that doesn't need daily fine tuning depending on customer activities
- No diversity
 - Chosen transit providers all reached over same satellite or same submarine cable
 - Chosen transit providers have poor onward transit and peering

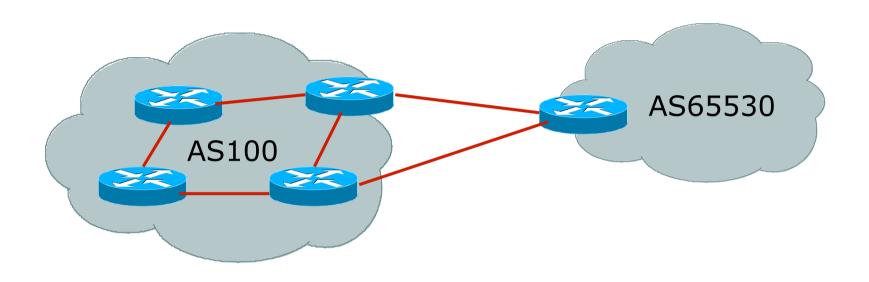
Peers

- A peer is another autonomous system with which the local network has agreed to exchange locally sourced routes and traffic
- Private peer
 - Private link between two providers for the purpose of interconnecting
- Public peer
 - Internet Exchange Point, where providers meet and freely decide who they will interconnect with
- Recommendation: peer as much as possible!

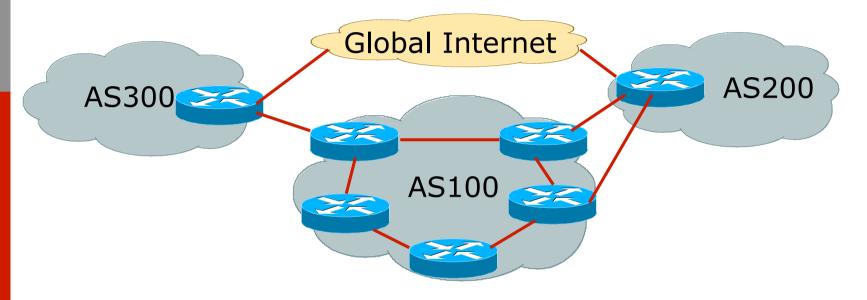

Common Mistakes

- Mistaking a transit provider's "Exchange" business for a no-cost public peering point
- Not working hard to get as much peering as possible
 - Physically near a peering point (IXP) but not present at it
 - (Transit sometimes is cheaper than peering!!)
- Ignoring/avoiding competitors because they are competition
 - Even though potentially valuable peering partner to give customers a better experience

Multihoming Scenarios


- Stub network
- Multi-homed stub network
- Multi-homed network
- Multiple Sessions to another AS

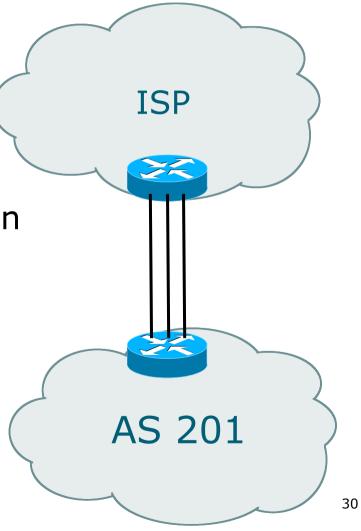
Stub Network


- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- □ Policy confined within upstream ISP's policy

Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP's policy

Multi-homed Network

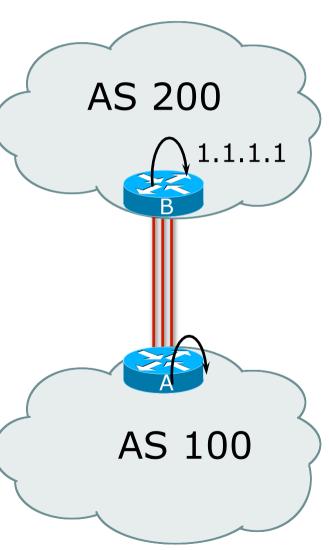


- Many situations possible
 - multiple sessions to same ISP
 - secondary for backup only
 - load-share between primary and secondary
 - selectively use different ISPs

Multiple Sessions to an ISP

- Several options
 - ebgp multihop
 - bgp multipath
 - cef loadsharing

bgp attribute manipulation

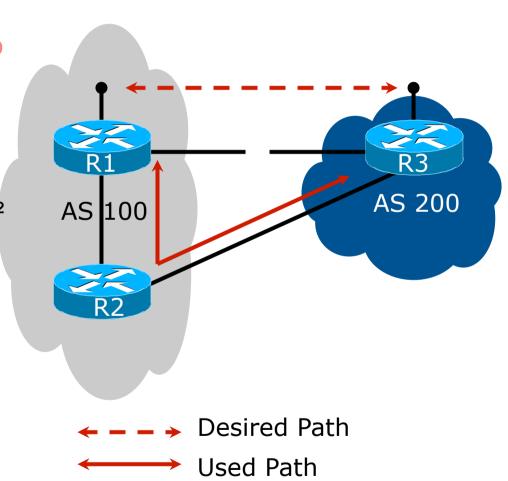


Multiple Sessions to an AS – ebgp multihop

- Use ebgp-multihop
 - Run eBGP between loopback addresses
 - eBGP prefixes learned with loopback address as next hop
- Cisco IOS

```
router bgp 100
neighbor 1.1.1.1 remote-as 200
neighbor 1.1.1.1 ebgp-multihop 2
!
ip route 1.1.1.1 255.255.255.255 serial 1/0
ip route 1.1.1.1 255.255.255.255 serial 1/1
ip route 1.1.1.1 255.255.255.255 serial 1/2
```

 Common error made is to point remote loopback route at IP address rather than specific link


Multiple Sessions to an AS

– ebgp multihop

- One serious eBGP-multihop caveat:
 - R1 and R3 are eBGP peers that are loopback peering
 - Configured with:

neighbor x.x.x.x ebgp-multihop 2

- If the R1 to R3 link goes down the session could establish via R2
- Usually happens when routing to remote loopback is dynamic, rather than static pointing at a link

Multiple Sessions to an ISP

- ebgp multihop
- Try and avoid use of ebgp-multihop unless:
 - It's absolutely necessary -or-
 - Loadsharing across multiple links
- Many ISPs discourage its use, for example:

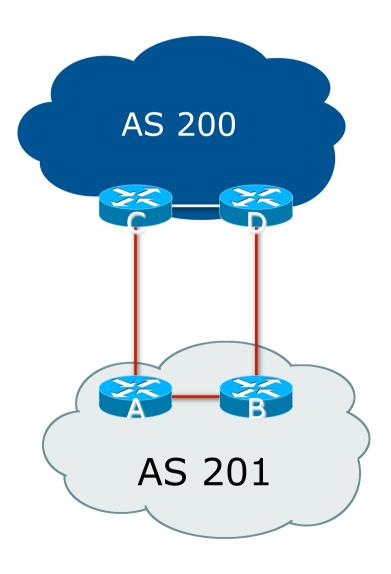
We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:

- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker

Multiple Sessions to an AS

bgp multi path

- Three BGP sessions required
- Platform limit on number of paths (could be as little as 6)
- Full BGP feed makes this unwieldy
 - 3 copies of Internet Routing Table goes into the FIB


```
router bgp 100
neighbor 1.1.2.1 remote-as 200
neighbor 1.1.2.5 remote-as 200
neighbor 1.1.2.9 remote-as 200
maximum-paths 3
```


Multiple Sessions to an AS

bgp attributes & filters

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution

Basic Principles of Multihoming

Let's learn to walk before we try running...

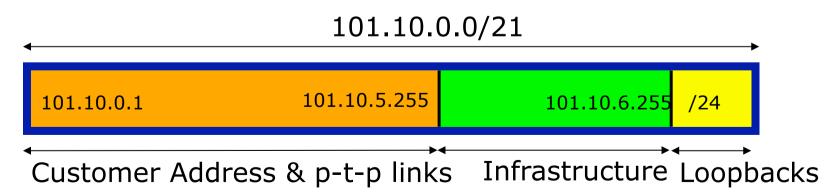
The Basic Principles

- Announcing address space attracts traffic
 - (Unless policy in upstream providers interferes)
- Announcing the ISP aggregate out a link will result in traffic for that aggregate coming in that link
- Announcing a subprefix of an aggregate out a link means that all traffic for that subprefix will come in that link, even if the aggregate is announced somewhere else
 - The most specific announcement wins!

The Basic Principles

- To split traffic between two links:
 - Announce the aggregate on both links ensures redundancy
 - Announce one half of the address space on each link
 - (This is the first step, all things being equal)
- Results in:
 - Traffic for first half of address space comes in first link
 - Traffic for second half of address space comes in second link
 - If either link fails, the fact that the aggregate is announced ensures there is a backup path

The Basic Principles

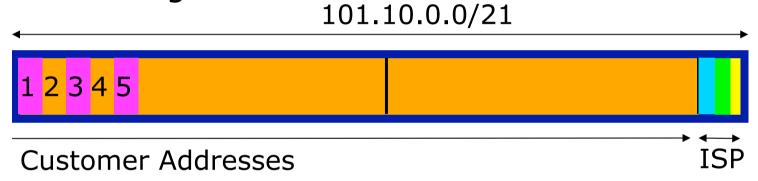

- The keys to successful multihoming configuration:
 - Keeping traffic engineering prefix announcements independent of customer iBGP
 - Understanding how to announce aggregates
 - Understanding the purpose of announcing subprefixes of aggregates
 - Understanding how to manipulate BGP attributes
 - Too many upstreams/external paths makes multihoming harder (2 or 3 is enough!)

IP Addressing & Multihoming

How Good IP Address Plans assist with Multihoming

IP Addressing & Multihoming

- IP Address planning is an important part of Multihoming
- Previously have discussed separating:
 - Customer address space
 - Customer p-t-p link address space
 - Infrastructure p-t-p link address space
 - Loopback address space



IP Addressing & Multihoming

- ISP Router loopbacks and backbone point to point links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /30
 - Small requirements compared with total address space
 - Some ISPs use IP unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

Unplanned IP addressing

ISP fills up customer IP addressing from one end of the range:

- Customers generate traffic
 - Dividing the range into two pieces will result in one /22 with all the customers, and one /22 with just the ISP infrastructure the addresses
 - No loadbalancing as all traffic will come in the first /22
 - Means further subdivision of the first /22 = harder work

Planned IP addressing

If ISP fills up customer addressing from both ends of the range:

101.10.0.0/21 1 3 5 7 9 2 4 6 810

- Customer Addresses Customer Addresses ISP
 - First customer from first /22, second customer from second /22, third from first /22, etc
- This works also for residential versus commercial customers:
 - Residential from first /22
 - Commercial from second /22

Planned IP Addressing

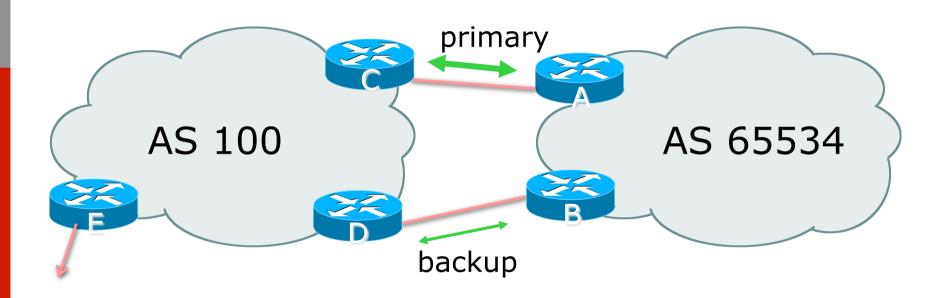
- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Don't forget to always announce an aggregate out of each link

Basic Multihoming

Let's try some simple worked examples...

Basic Multihoming

- No frills multihoming
- Will look at two cases:
 - Multihoming with the same ISP
 - Multihoming to different ISPs
- Will keep the examples easy
 - Understanding easy concepts will make the more complex scenarios easier to comprehend
 - All assume that the site multihoming has a /19 address block


Basic Multihoming

- This type is most commonplace at the edge of the Internet
 - Networks here are usually concerned with inbound traffic flows
 - Outbound traffic flows being "nearest exit" is usually sufficient
- Can apply to the leaf ISP as well as Enterprise networks

Two links to the same ISP

One link primary, the other link backup only

- Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup
 - For example, primary path might be an E1, backup might be 64kbps

AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
 - primary link:
 - Outbound announce /19 unaltered
 - Inbound receive default route
 - backup link:
 - □ Outbound announce /19 with increased metric
 - Inbound received default, and reduce local preference
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 description RouterC
neighbor 122.102.10.2 prefix-list aggregate out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
ip route 121.10.0.0 255.255.224.0 null0
```

..next slide

Router B Configuration router bgp 65534 network 121.10.0.0 mask 255.255.224.0 neighbor 122.102.10.6 remote-as 100 neighbor 122.102.10.6 description RouterD neighbor 122.102.10.6 prefix-list aggregate out neighbor 122.102.10.6 route-map routerD-out out neighbor 122.102.10.6 prefix-list default in neighbor 122.102.10.6 route-map routerD-in in

```
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
!
route-map routerD-out permit 10
set metric 10
!
route-map routerD-in permit 10
set local-preference 90
!
```

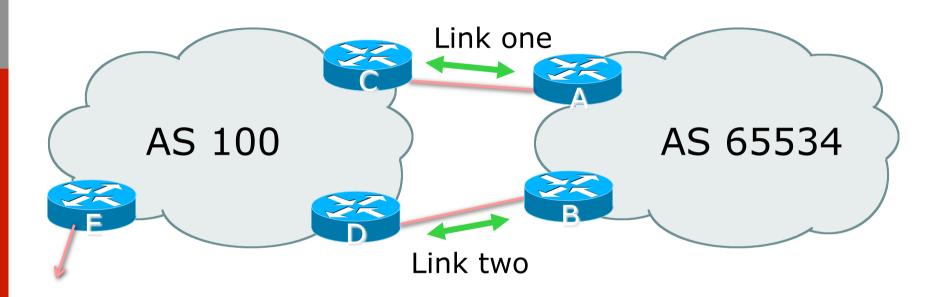
Router C Configuration (main link)
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0

Router D Configuration (backup link)
router bgp 100
neighbor 122.102.10.5 remote-as 65534
neighbor 122.102.10.5 default-originate
neighbor 122.102.10.5 prefix-list Customer in
neighbor 122.102.10.5 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0

Router E Configuration

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customer out
!
ip prefix-list Customer permit 121.10.0.0/19
```

- Router E removes the private AS and customer's subprefixes from external announcements
- Private AS still visible inside AS100


Two links to the same ISP

With Loadsharing

Loadsharing to the same ISP

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
 - Unequal capacity circuits requires more refinement – see later

Loadsharing to the same ISP

■ Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
 - assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until "perfect" loadsharing achieved
- Accept the default from upstream
 - basic outbound loadsharing by nearest exit
 - okay in first approx as most ISP and end-site traffic is inbound

Router A Configuration

```
router bgp 65534
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.2 remote-as 100
neighbor 122.102.10.2 prefix-list routerC out
neighbor 122.102.10.2 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list routerC permit 121.10.0.0/20
ip prefix-list routerC permit 121.10.0.0/19
ip route 121.10.0.0 255.255.240.0 null0
ip route 121.10.0.0 255.255.224.0 null0
```

Router B Configuration router bgp 65534 network 121.10.0.0 mask 255.255.224.0 network 121.10.16.0 mask 255.255.240.0 neighbor 122.102.10.6 remote-as 100 neighbor 122.102.10.6 prefix-list routerD out neighbor 122.102.10.6 prefix-list default in ip prefix-list default permit 0.0.0.0/0 ip prefix-list routerD permit 121.10.16.0/20 ip prefix-list routerD permit 121.10.0.0/19 ip route 121.10.16.0 255.255.240.0 null0

ip route 121.10.0.0 255.255.224.0 null0

Router C Configuration

```
router bgp 100
neighbor 122.102.10.1 remote-as 65534
neighbor 122.102.10.1 default-originate
neighbor 122.102.10.1 prefix-list Customer in
neighbor 122.102.10.1 prefix-list default out
!
ip prefix-list Customer permit 121.10.0.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

- Router C only allows in /19 and /20 prefixes from customer block
- Router D configuration is identical

Router E Configuration
 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list Customer out
!
 ip prefix-list Customer permit 121.10.0.0/19
Private AS still visible inside AS100

- Default route for outbound traffic?
 - Use default-information originate for the IGP and rely on IGP metrics for nearest exit
 - e.g. on router A:

```
router ospf 65534

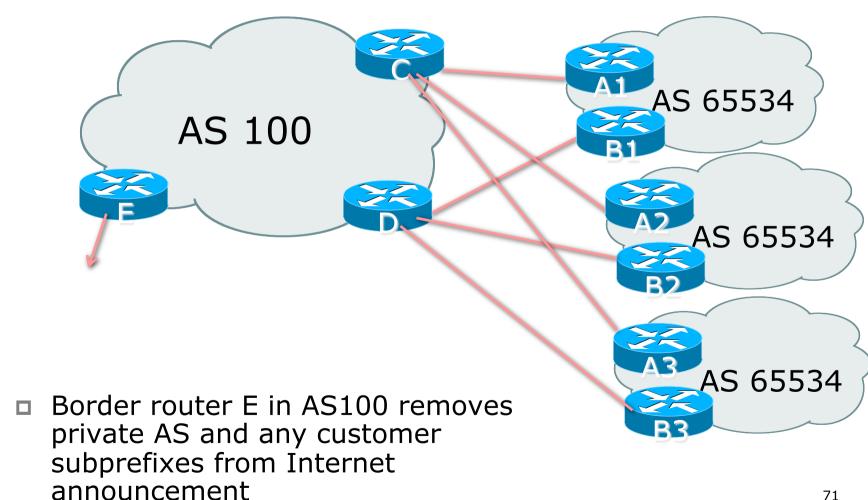
default-information originate metric 2 metric-type 1

Or

router isis as65534

default-information originate
```

- Loadsharing configuration is only on customer router
- Upstream ISP has to
 - remove customer subprefixes from external announcements
 - remove private AS from external announcements
- Could also use BGP communities


Two links to the same ISP

Multiple Dualhomed Customers (RFC2270)

Multiple Dualhomed Customers (RFC2270)

- Unusual for an ISP just to have one dualhomed customer
 - Valid/valuable service offering for an ISP with multiple PoPs
 - Better for ISP than having customer multihome with another provider!
- Look at scaling the configuration
 - ⇒ Simplifying the configuration
 - Using templates, peer-groups, etc
 - Every customer has the same configuration (basically)

Multiple Dualhomed Customers (RFC2270)

Multiple Dualhomed Customers (RFC2270)

- Customer announcements as per previous example
- Use the same private AS for each customer
 - documented in RFC2270
 - address space is not overlapping
 - each customer hears default only
- Router An and Bn configuration same as Router A and B previously

Router A1 Configuration router bgp 65534 network 121.10.0.0 mask 255.255.224.0 network 121.10.0.0 mask 255.255.240.0 neighbor 122.102.10.2 remote-as 100 neighbor 122.102.10.2 prefix-list routerC out neighbor 122.102.10.2 prefix-list default in ip prefix-list default permit 0.0.0.0/0 ip prefix-list routerC permit 121.10.0.0/20 ip prefix-list routerC permit 121.10.0.0/19 ip route 121.10.0.0 255.255.240.0 null0

ip route 121.10.0.0 255.255.224.0 null0

Router B1 Configuration router bgp 65534 network 121.10.0.0 mask 255.255.224.0 network 121.10.16.0 mask 255.255.240.0 neighbor 122.102.10.6 remote-as 100 neighbor 122.102.10.6 prefix-list routerD out neighbor 122.102.10.6 prefix-list default in ip prefix-list default permit 0.0.0.0/0 ip prefix-list routerD permit 121.10.16.0/20 ip prefix-list routerD permit 121.10.0.0/19 ip route 121.10.0.0 255.255.224.0 null0 ip route 121.10.16.0 255.255.240.0 null0

Router C Configuration

```
router bgp 100
neighbor bgp-customers peer-group
neighbor bgp-customers remote-as 65534
neighbor bgp-customers default-originate
neighbor bgp-customers prefix-list default out
neighbor 122.102.10.1 peer-group bgp-customers
neighbor 122.102.10.1 description Customer One
neighbor 122.102.10.1 prefix-list Customer1 in
neighbor 122.102.10.9 peer-group bgp-customers
neighbor 122.102.10.9 description Customer Two
neighbor 122.102.10.9 prefix-list Customer2 in
```

```
neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

 Router C only allows in /19 and /20 prefixes from customer block

Router D Configuration

```
router bgp 100
neighbor bgp-customers peer-group
neighbor bgp-customers remote-as 65534
neighbor bgp-customers default-originate
neighbor bgp-customers prefix-list default out
neighbor 122.102.10.5 peer-group bgp-customers
neighbor 122.102.10.5 description Customer One
neighbor 122.102.10.5 prefix-list Customer1 in
neighbor 122.102.10.13 peer-group bgp-customers
neighbor 122.102.10.13 description Customer Two
neighbor 122.102.10.13 prefix-list Customer2 in
```

```
neighbor 122.102.10.21 peer-group bgp-customers
neighbor 122.102.10.21 description Customer Three
neighbor 122.102.10.21 prefix-list Customer3 in
!
ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

Router D only allows in /19 and /20 prefixes from customer block

- Router E Configuration
 - assumes customer address space is not part of upstream's address block

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 remove-private-AS
neighbor 122.102.10.17 prefix-list Customers out
!
ip prefix-list Customers permit 121.10.0.0/19
ip prefix-list Customers permit 121.16.64.0/19
ip prefix-list Customers permit 121.14.192.0/19
```

□ Private AS still visible inside AS100

- If customers' prefixes come from ISP's address block
 - do NOT announce them to the Internet
 - announce ISP aggregate only
- Router E configuration:

```
router bgp 100
neighbor 122.102.10.17 remote-as 110
neighbor 122.102.10.17 prefix-list my-aggregate out
!
ip prefix-list my-aggregate permit 121.8.0.0/13
```

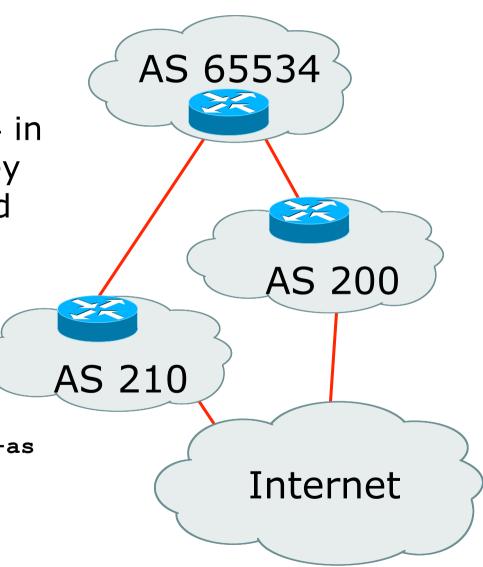
Multihoming Summary

- Use private AS for multihoming to the same upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream router E configuration is identical across all situations

Basic Multihoming

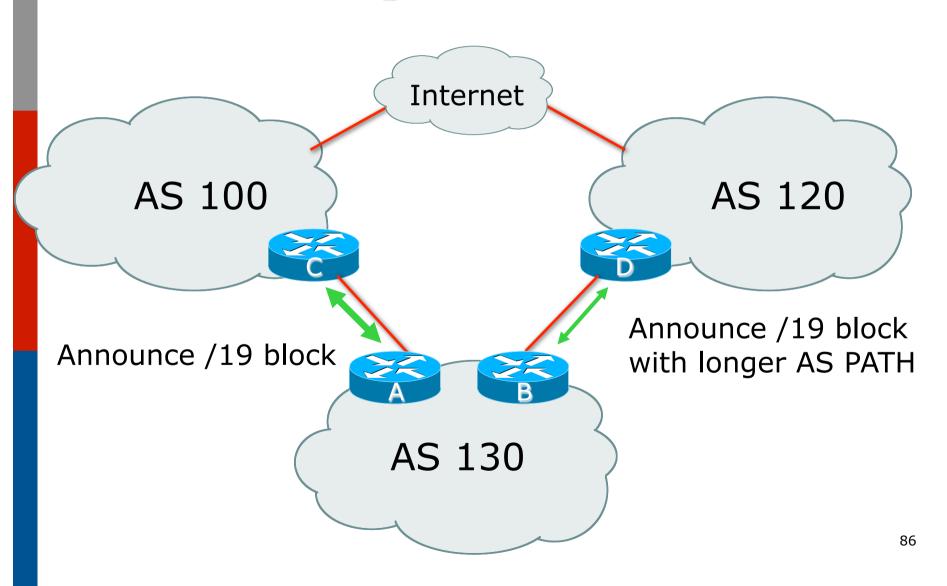
Multihoming to Different ISPs

Two links to different ISPs


- □ Use a Public AS
 - Or use private AS if agreed with the other ISP
 - But some people don't like the "inconsistent-AS" which results from use of a private-AS
- Address space comes from
 - both upstreams or
 - Regional Internet Registry
- Configuration concepts very similar

Inconsistent-AS?

Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200


- This is NOT bad
- Nor is it illegal
- IOS command is

show ip bgp inconsistent-as

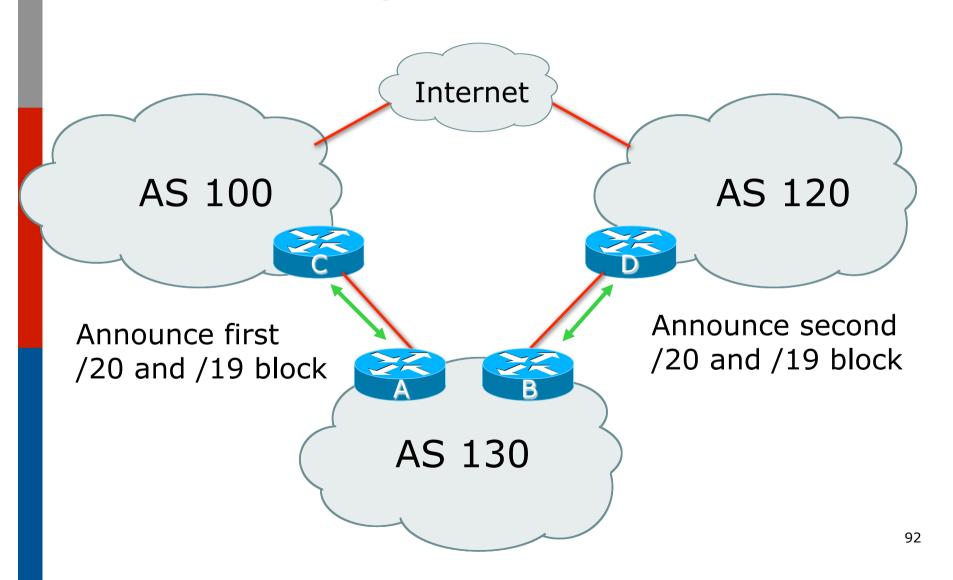
Two links to different ISPs

One link primary, the other link backup only

- Announce /19 aggregate on each link
 - primary link makes standard announcement
 - backup link lengthens the AS PATH by using AS PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list aggregate out
neighbor 122.102.10.1 prefix-list default in
!
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```


Router B Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list aggregate out
neighbor 120.1.5.1 route-map routerD-out out
neighbor 120.1.5.1 prefix-list default in
neighbor 120.1.5.1 route-map routerD-in in
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
route-map routerD-out permit 10
set as-path prepend 130 130 130
route-map routerD-in permit 10
 set local-preference 80
```

- Not a common situation as most sites tend to prefer using whatever capacity they have
 - (Useful when two competing ISPs agree to provide mutual backup to each other)
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction

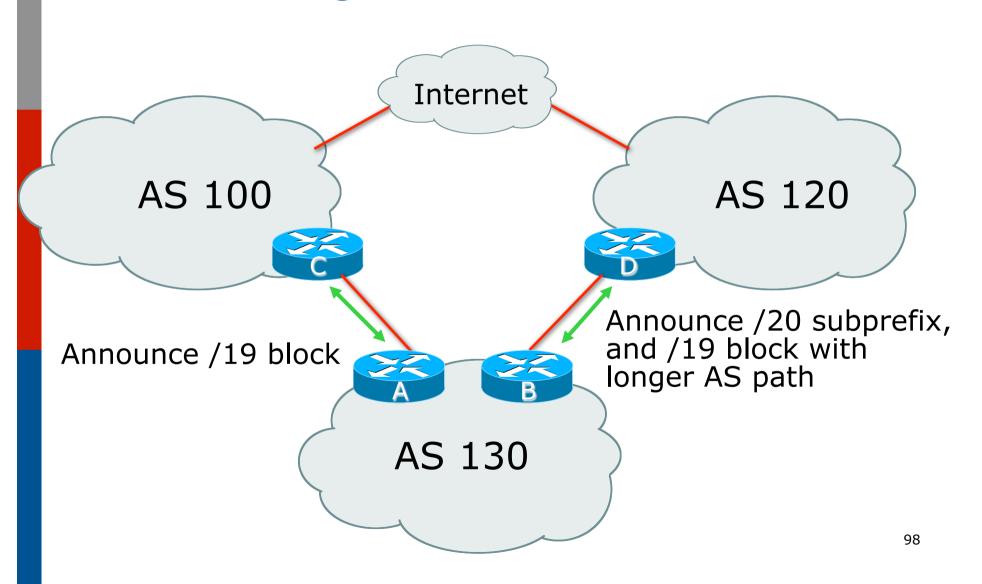
Two links to different ISPs

With Loadsharing

- Announce /19 aggregate on each link
- □ Split /19 and announce as two /20s, one on each link
 - basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
network 121.10.0.0 mask 255.255.240.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list firstblock out
neighbor 122.102.10.1 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list firstblock permit 121.10.0.0/20
ip prefix-list firstblock permit 121.10.0.0/19
```


Router B Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
network 121.10.16.0 mask 255.255.240.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list secondblock out
neighbor 120.1.5.1 prefix-list default in
ip prefix-list default permit 0.0.0.0/0
ip prefix-list secondblock permit 121.10.16.0/20
ip prefix-list secondblock permit 121.10.0.0/19
```

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution
 - Start with a simple concept
 - And build on it...!

Two links to different ISPs

More Controlled Loadsharing

- Announce /19 aggregate on each link
 - On first link, announce /19 as normal
 - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
 - controls loadsharing between upstreams and the Internet
- Vary the subprefix size and AS PATH length until "perfect" loadsharing achieved
- Still require redundancy!

Router A Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 100
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list aggregate out
!
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

Router B Configuration

```
router bgp 130
network 121.10.0.0 mask 255.255.224.0
network 121.10.16.0 mask 255.255.240.0
neighbor 120.1.5.1 remote-as 120
neighbor 120.1.5.1 prefix-list default in
neighbor 120.1.5.1 prefix-list subblocks out
neighbor 120.1.5.1 route-map routerD out
route-map routerD permit 10
match ip address prefix-list aggregate
set as-path prepend 130 130
route-map routerD permit 20
ip prefix-list subblocks permit 121.10.0.0/19 le 20
ip prefix-list aggregate permit 121.10.0.0/19
```

- This example is more commonplace
- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

Summary

Summary

- Previous examples dealt with simple case
- Load balancing inbound traffic flow
 - Achieved by modifying outbound routing announcements
 - Aggregate is always announced
- We have not looked at outbound traffic flow
 - For now this is left as "nearest exit"

Simple Multihoming

ISP Workshops

Service Provider Multihoming

ISP Workshops

Service Provider Multihoming

- Previous examples dealt with loadsharing inbound traffic
 - Of primary concern at Internet edge
 - What about outbound traffic?
- Transit ISPs strive to balance traffic flows in both directions
 - Balance link utilisation
 - Try and keep most traffic flows symmetric
 - Some edge ISPs try and do this too
- The original "Traffic Engineering"

Service Provider Multihoming

- Balancing outbound traffic requires inbound routing information
 - Common solution is "full routing table"
 - Rarely necessary
 - Why use the "routing mallet" to try solve loadsharing problems?
 - "Keep It Simple" is often easier (and \$\$\$ cheaper) than carrying N-copies of the full routing table

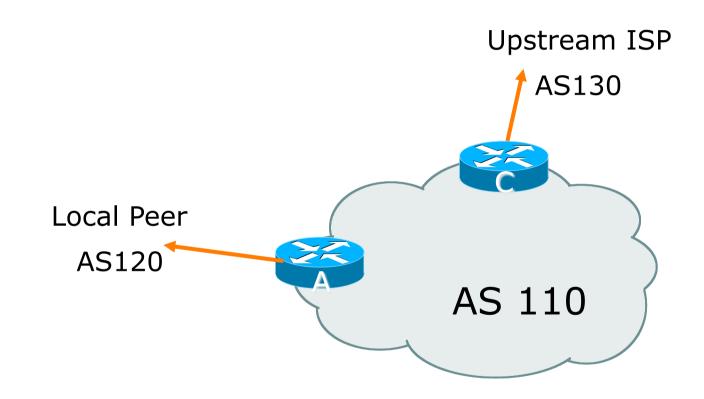
Service Provider Multihoming MYTHS!!

Common MYTHS

- 1. You need the full routing table to multihome
 - People who sell router memory would like you to believe this
 - Only true if you are a transit provider
 - Full routing table can be a significant hindrance to multihoming
- 2. You need a BIG router to multihome
 - Router size is related to data rates, not running BGP
 - In reality, to multihome, your router needs to:
 - Have two interfaces,
 - Be able to talk BGP to at least two peers,
 - Be able to handle BGP attributes,
 - Handle at least one prefix
- 3. BGP is complex
 - In the wrong hands, yes it can be! Keep it Simple!

Service Provider Multihoming: Some Strategies

- Take the prefixes you need to aid traffic engineering
 - Look at NetFlow data for popular sites
- Prefixes originated by your immediate neighbours and their neighbours will do more to aid load balancing than prefixes from ASNs many hops away
 - Concentrate on local destinations
- Use default routing as much as possible
 - Or use the full routing table with care


Service Provider Multihoming

- Examples
 - One upstream, one local peer
 - One upstream, local exchange point
 - Two upstreams, one local peer
 - Three upstreams, unequal link bandwidths
- Require BGP and a public ASN
- Examples assume that the local network has their own /19 address block

Service Provider Multihoming

One upstream, one local peer

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the "Internet"
- Connect to the local competition so that local traffic stays local
 - Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate on each link
- Accept default route only from upstream
 - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes the local peer originates

Router A Configuration Prefix filters inbound router bgp 110 network 121.10.0.0 mask 255.255.224.0 neighbor 122.102.10.2 remote-as 120 neighbor 122.102.10.2 prefix-list my-block out, neighbor 122.102.10.2 prefix-list AS120-peer in ip prefix-list AS120-peer permit 122.5.16.0/19 ip prefix-list AS120-peer permit 121.240.0.0/20 ip prefix-list my-block permit 121.10.0.0/19 ip route 121.10.0.0 255.255.224.0 null0 250

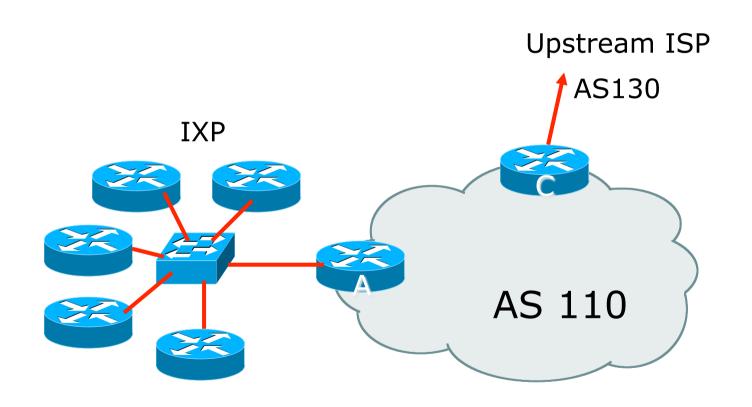
■ Router A – Alternative Configuration

```
router bgp 110
network 121.10.0.0 mask 255.255.224.0 AS Path filters -
                                        more "trusting"
neighbor 122.102.10.2 remote-as 120
neighbor 122.102.10.2 prefix-list my-block/out
neighbor 122.102.10.2 filter-list 10 in
ip as-path access-list 10 permit ^(120 )+$
ip prefix-list my-block permit 121.10.0.0/19
ip route 121.10.0.0 255.255.224.0 null0
```

Router C Configuration

```
router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 130
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

- Two configurations possible for Router A
 - Filter-lists assume peer knows what they are doing
 - Prefix-list higher maintenance, but safer
 - Some ISPs use both
- Local traffic goes to and from local peer, everything else goes to upstream


Aside:

Configuration Recommendations

- □ Private Peers
 - The peering ISPs exchange prefixes they originate
 - Sometimes they exchange prefixes from neighbouring ASNs too
- Be aware that the private peer eBGP router should carry only the prefixes you want the private peer to receive
 - Otherwise they could point a default route to you and unintentionally transit your backbone

Service Provider Multihoming

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the "Internet"
- Connect to the local Internet Exchange Point so that local traffic stays local
 - Saves spending valuable \$ on upstream transit costs for local traffic
- This example is a scaled up version of the previous one

- Announce /19 aggregate to every neighbouring AS
- Accept default route only from upstream
 - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by IXP peers

Router A Configuration interface fastethernet 0/0 description Exchange Point LAN ip address 120.5.10.1 mask 255.255.255.224 router bgp 110 neighbor ixp-peers peer-group neighbor ixp-peers prefix-list my-block out neighbor ixp-peers remove-private-AS neighbor ixp-peers send-community neighbor ixp-peers route-map set-local-pref in ...next slide

```
neighbor 120.5.10.2 remote-as 100
neighbor 120.5.10.2 peer-group ixp-peers
neighbor 120.5.10.2 prefix-list peer100 in
neighbor 120.5.10.3 remote-as 101
neighbor 120.5.10.3 peer-group ixp-peers
neighbor 120.5.10.3 prefix-list peer101 in
neighbor 120.5.10.4 remote-as 102
neighbor 120.5.10.4 peer-group ixp-peers
neighbor 120.5.10.4 prefix-list peer102 in
neighbor 120.5.10.5 remote-as 103
neighbor 120.5.10.5 peer-group ixp-peers
neighbor 120.5.10.5 prefix-list peer103 in
...next slide
```

```
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list peer100 permit 122.0.0.0/19
ip prefix-list peer101 permit 122.30.0.0/19
ip prefix-list peer102 permit 122.12.0.0/19
ip prefix-list peer103 permit 122.18.128.0/19
!
route-map set-local-pref permit 10
set local-preference 150
!
```

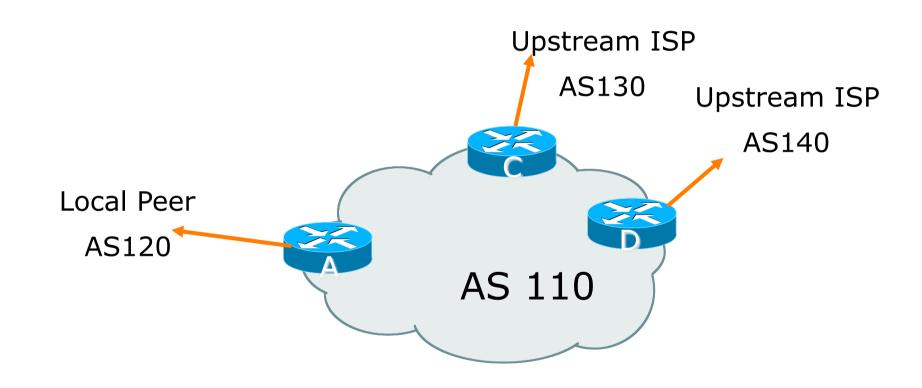
- Note that Router A does not generate the aggregate for AS110
 - If Router A becomes disconnected from backbone, then the aggregate is no longer announced to the IX
 - BGP failover works as expected
- Note the inbound route-map which sets the local preference higher than the default
 - This is a visual reminder that BGP Best Path for local traffic will be across the IXP

Router C Configuration

```
router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 130
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

- Note Router A configuration
 - Prefix-list higher maintenance, but safer
 - No generation of AS110 aggregate
- IXP traffic goes to and from local IXP, everything else goes to upstream

Aside:


IXP Configuration Recommendations

- IXP peers
 - The peering ISPs at the IXP exchange prefixes they originate
 - Sometimes they exchange prefixes from neighbouring ASNs too
- Be aware that the IXP border router should carry only the prefixes you want the IXP peers to receive and the destinations you want them to be able to reach
 - Otherwise they could point a default route to you and unintentionally transit your backbone
- If IXP router is at IX, and distant from your backbone
 - Don't originate your address block at your IXP router

Service Provider Multihoming

Two upstreams, one local peer

- Connect to both upstream transit providers to see the "Internet"
 - Provides external redundancy and diversity the reason to multihome
- Connect to the local peer so that local traffic stays local
 - Saves spending valuable \$ on upstream transit costs for local traffic

- Announce /19 aggregate on each link
- Accept default route only from upstreams
 - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by local peer
- Note separation of Router C and D
 - Single edge router means no redundancy
- Router A
 - Same routing configuration as in example with one upstream and one local peer

Router C Configuration

```
router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote-as 130
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

Router D Configuration

```
router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.5 remote-as 140
neighbor 122.102.10.5 prefix-list default in
neighbor 122.102.10.5 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

- This is the simple configuration for Router C and D
- Traffic out to the two upstreams will take nearest exit
 - Inexpensive routers required
 - This is not useful in practice especially for international links
 - Loadsharing needs to be better

- Better configuration options:
 - Accept full routing from both upstreams
 - Expensive & unnecessary!
 - Accept default from one upstream and some routes from the other upstream
 - The way to go!

Allow all prefixes in Router C Configuration apart from RFC1918 and friends router bgp 110 network 121.10.0.0 mask 255.255.224.0 neighbor 122.102.10.1 remote-as 130 neighbor 122.102.10.1 prefix-list rfc1918-deny in neighbor 122.102.10.1 prefix-list my-block out neighbor 122.102.10.1 route-map AS130-loadshare in ip prefix-list my-block permit 121.10.0.0/19 ! See www.cymru.com/Documents/bogon-list.html ! ...for "RFC1918 and friends" list ...next slide

```
ip route 121.10.0.0 255.255.224.0 null0
ip as-path access-list 10 permit ^(130)+$
ip as-path access-list 10 permit ^(130 )+ [0-9]+$
route-map AS130-loadshare permit 10
match ip as-path 10
 set local-preference 120
route-map AS130-loadshare permit 20
 set local-preference 80
```

Router D Configuration
router bgp 110
network 121.10.0.0 mask 255.255.224.0
neighbor 122.102.10.5 remote-as 140
neighbor 122.102.10.5 prefix-list rfc1918-deny in neighbor 122.102.10.5 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
! See www.cymru.com/Documents/bogon-list.html
! ...for "RFC1918 and friends" list

- Router C configuration:
 - Accept full routes from AS130
 - Tag prefixes originated by AS130 and AS130's neighbouring ASes with local preference 120
 - □ Traffic to those ASes will go over AS130 link
 - Remaining prefixes tagged with local preference of 80
 - Traffic to other all other ASes will go over the link to AS140
- Router D configuration same as Router C without the route-map

- □ Full routes from upstreams
 - Expensive needs lots of memory and CPU
 - Need to play preference games
 - Previous example is only an example real life will need improved fine-tuning!
 - Previous example doesn't consider inbound traffic – see earlier in presentation for examples

Two Upstreams, One Local Peer Partial Routes: Strategy

- Ask one upstream for a default route
 - Easy to originate default towards a BGP neighbour
- Ask other upstream for a full routing table
 - Then filter this routing table based on neighbouring ASN
 - E.g. want traffic to their neighbours to go over the link to that ASN
 - Most of what upstream sends is thrown away
 - Easier than asking the upstream to set up custom BGP filters for you

Router C Configuration

```
network 121.10.0.0 mask 255.255.224.0

neighbor 122.102.10.1 remote-as 130

neighbor 122.102.10.1 prefix-list rfc1918-nodef-deny in neighbor 122.102.10.1 prefix-list my-block out neighbor 122.102.10.1 filter-list 10 in neighbor 122.102.10.1 route-map tag-default-low in !

...next slide

AS filter list filters prefixes based on
```

origin ASN

Allow all prefixes and

default in; deny

```
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
ip route 121.10.0.0 255.255.224.0 null0
ip as-path access-list 10 permit ^(130)+$
ip as-path access-list 10 permit ^(130 )+ [0-9]+$
route-map tag-default-low permit 10
match ip address prefix-list default
set local-preference 80
route-map tag-default-low permit 20
```

Router D Configuration

```
router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.5 remote-as 140
  neighbor 122.102.10.5 prefix-list default in
  neighbor 122.102.10.5 prefix-list my-block out
!
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
```

- Router C configuration:
 - Accept full routes from AS130
 - (or get them to send less)
 - Filter ASNs so only AS130 and AS130's neighbouring ASes are accepted
 - Allow default, and set it to local preference 80
 - Traffic to those ASes will go over AS130 link
 - Traffic to other all other ASes will go over the link to AS140
 - If AS140 link fails, backup via AS130 and vice-versa

Router C IGP Configuration router ospf 110 default-information originate metric 30 passive-interface Serial 0/0 ip route 0.0.0.0 0.0.0.0 serial 0/0 254 Router D IGP Configuration router ospf 110 default-information originate metric 10 passive-interface Serial 0/0 ip route 0.0.0.0 0.0.0.0 serial 0/0 254

- Partial routes from upstreams
 - Use OSPF to determine outbound path
 - Router D default has metric 10 primary outbound path
 - Router C default has metric 30 backup outbound path
 - Serial interface goes down, static default is removed from routing table, OSPF default withdrawn

- Partial routes from upstreams
 - Not expensive only carry the routes necessary for loadsharing
 - Need to filter on AS paths
 - Previous example is only an example real life will need improved fine-tuning!
 - Previous example doesn't consider inbound traffic – see earlier in presentation for examples

Aside:

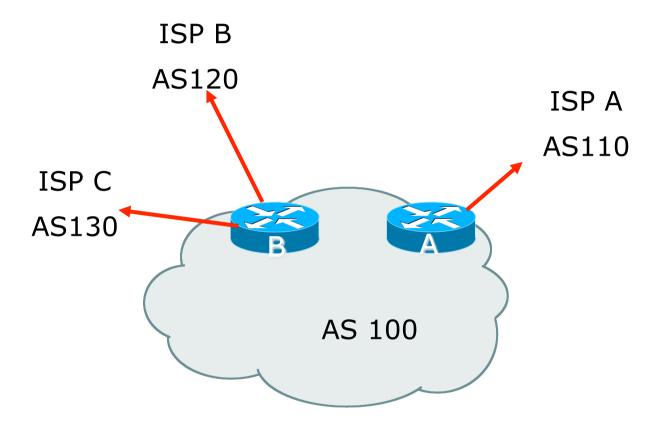
Configuration Recommendation

- When distributing internal default by iBGP or OSPF/ISIS
 - Make sure that routers connecting to private peers or to IXPs do NOT carry the default route
 - Otherwise they could point a default route to you and unintentionally transit your backbone
 - Simple fix for Private Peer/IXP routers:

```
ip route 0.0.0.0 0.0.0.0 null0
```

Service Provider Multihoming

Three upstreams, unequal bandwidths


Three upstreams, unequal bandwidths

- Autonomous System has three upstreams
 - 16Mbps to ISP A
 - 8Mbps to ISP B
 - 4Mbps to ISP C
- What is the strategy here?
 - One option is full table from each
 - $3x 450k \text{ prefixes} \Rightarrow 1350k \text{ paths}$
 - Other option is partial table and defaults from each
 - How??

Strategy

- Two external routers (gives router redundancy)
 - Do NOT need three routers for this
- Connect biggest bandwidth to one router
 - Most of inbound and outbound traffic will go here
- Connect the other two links to the second router
 - Provides maximum backup capacity if primary link fails
- Use the biggest link as default
 - Most of the inbound and outbound traffic will go here
- Do the traffic engineering on the two smaller links
 - Focus on regional traffic needs

Diagram

- Router A has 16Mbps circuit to ISP A
- Router B has 8Mbps and 4Mbps circuits to ISPs B&C

- Available BGP feeds from Transit providers:
 - Full table
 - Customer prefixes and default
 - Default Route
- These are the common options on Internet today
 - Very rare for any provider to offer anything different
 - Very rare for any provider to customise BGP feed for a customer

- Accept only a default route from the provider with the largest connectivity, ISP A
 - Because most of the traffic is going to use this link
- If ISP A won't provide a default:
 - Still run BGP with them, but discard all prefixes
 - Point static default route to the upstream link
 - Distribute the default in the IGP
- Request the full table from ISP B & C
 - Most of this will be thrown away
 - ("Default plus customers" is not enough)

- How to decide what to keep and what to discard from ISPs B & C?
 - Most traffic will use ISP A link so we need to find a good/useful subset
- Discard prefixes transiting the global transit ISPs
 - Global transit ISPs generally appear in most non-local or regional AS-PATHs
- Discard prefixes with ISP A's ASN in the path
 - Makes more sense for traffic to those destinations to go via the link to ISP A

Global Transit ISPs include:

209	CenturyLink	3549	Level 3
701	VerizonBusiness	3356	Level 3
1239	Sprint	3561	Savvis
1668	AOL TDN	7018	AT&T
2914	NTT America		

ISP B peering Inbound AS-PATH filter

```
ip as-path access-list 1 deny 209
ip as-path access-list 1 deny 701
ip as-path access-list 1 deny 1239
ip as-path access-list 1 deny 3356
ip as-path access-list 1 deny 3549
ip as-path access-list 1 deny 3561
ip as-path access-list 1 deny 2914
ip as-path access-list 1 deny 7018
                                       Don't need ISPA and
ip as-path access-list 1 deny ISPA
ip as-path access-list 1 deny _ISPC_ ← ISPC prefixes via ISPB
ip as-path access-list 1 permit ISPB$
ip as-path access-list 1 permit ISPB [0-9]+$
ip as-path access-list 1 permit ISPB [0-9]+ [0-9]+$
ip as-path access-list 1 permit _ISPB_[0-9]+_[0-9]+_[0-9]+$
ip as-path access-list 1 deny .*
```

Outbound load-balancing strategy: ISP B peering configuration

- Part 1: Dropping Global Transit ISP prefixes
 - This can be fine-tuned if traffic volume is not sufficient
 - (More prefixes in = more traffic out)
- Part 2: Dropping prefixes transiting ISP A & C network
- Part 3: Permitting prefixes from ISP B, their BGP neighbours, and their neighbours, and their neighbours
 - More AS_PATH permit clauses, the more prefixes allowed in, the more egress traffic
 - Too many prefixes in will mean more outbound traffic than the link to ISP B can handle

- Similar AS-PATH filter can be built for the ISP C BGP peering
- If the same prefixes are heard from both ISP B and C, then establish proximity of their origin ASN to ISP B or C
 - e.g. ISP B might be in Japan, with the neighbouring ASN in Europe, yet ISP C might be in Europe
 - Transit to the ASN via ISP C makes more sense in this case

- The largest outbound link should announce just the aggregate
- The other links should announce:
 - a) The aggregate with AS-PATH prepend
 - b) Subprefixes of the aggregate, chosen according to traffic volumes to those subprefixes, and according to the services on those subprefixes

Example:

- Link to ISP B could be used just for Broadband/Dial customers — so number all such customers out of one contiguous subprefix
- Link to ISP C could be used just for commercial leased line customers — so number all such customers out of one contiguous subprefix

Router A: eBGP Configuration Example

```
router bgp 100
network 100.10.0.0 mask 255.255.224.0
neighbor 122.102.10.1 remote 110
neighbor 122.102.10.1 prefix-list default in
neighbor 122.102.10.1 prefix-list aggregate out
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list aggregate permit 100.10.0.0/19
!
```

Router B: eBGP Configuration Example

```
router bgp 100
network 100.10.0.0 mask 255.255.224.0
neighbor 120.103.1.1 remote 120
neighbor 120.103.1.1 filter-list 1 in
neighbor 120.103.1.1 prefix-list ISP-B out
neighbor 120.103.1.1 route-map to-ISP-B out
neighbor 121.105.2.1 remote 130
neighbor 121.105.2.1 filter-list 2 in
neighbor 121.105.2.1 prefix-list ISP-C out
neighbor 121.105.2.1 route-map to-ISP-C out
ip prefix-list aggregate permit 100.10.0.0/19
...next slide
```

Router B: eBGP Configuration Example

```
ip prefix-list ISP-B permit 100.10.0.0/19
ip prefix-list ISP-B permit 100.10.0.0/21
                                                  /21 to ISP B
                                                  "dial customers"
ip prefix-list ISP-C permit 100.10.0.0/19
ip prefix-list ISP-C permit 100.10.28.0/22
                                                  /22 to ISP C
route-map to-ISP-B permit 10
                                                  "biz customers"
match ip address prefix-list aggregate
 set as-path prepend 100
                                                  e.g. Single
                                                  prepend on ISP B
route-map to-ISP-B permit 20
                                                  link
route-map to-ISP-C permit 10
match ip address prefix-list aggregate
 set as-path prepend 100 100
                                                  e.g. Dual prepend
                                                  on ISP C link
route-map to-ISP-C permit 20
```

What about outbound backup?

- We have:
 - Default route from ISP A by eBGP
 - Mostly discarded full table from ISPs B&C
- Strategy:
 - Originate default route by OSPF on Router A (with metric 10) — link to ISP A
 - Originate default route by OSPF on Router B (with metric 30) — links to ISPs B & C
 - Plus on Router B:
 - Static default route to ISP B with distance 240
 - Static default route to ISP C with distance 245
 - When link goes down, static route is withdrawn

Outbound backup: steady state

- Steady state (all links up and active):
 - Default route is to Router A OSPF metric 10
 - (Because default learned by eBGP ⇒ default is in RIB ⇒ OSPF will originate default)
 - Backup default is to Router B OSPF metric
 20
 - eBGP prefixes learned from upstreams distributed by iBGP throughout backbone
 - (Default can be filtered in iBGP to avoid "RIB failure error")

Outbound backup: failure examples

- □ Link to ISP A down, to ISPs B&C up:
 - Default route is to Router B OSPF metric 20
 - (eBGP default gone from RIB, so OSPF on Router A withdraws the default)
- Above is true if link to B or C is down as well
- Link to ISPs B & C down, link to ISP A is up:
 - Default route is to Router A OSPF metric 10
 - (static defaults on Router B removed from RIB, so OSPF on Router B withdraws the default)

Other considerations

- Default route should not be propagated to devices terminating non-transit peers and customers
- Rarely any need to carry default in iBGP
 - Best to filter out default in iBGP mesh peerings
- Still carry other eBGP prefixes across iBGP mesh
 - Otherwise routers will follow default route rules resulting in suboptimal traffic flow
 - Not a big issue because not carrying full table

Router A: iBGP Configuration Example

```
router bgp 100
network 100.10.0.0 mask 255.255.224.0
neighbor ibgp-peers peer-group
neighbor ibgp-peers remote-as 100
neighbor ibgp-peers prefix-list ibgp-filter out
neighbor 100.10.0.2 peer-group ibgp-peers
neighbor 100.10.0.3 peer-group ibgp-peers
ip prefix-list ibgp-filter deny 0.0.0.0/0
ip prefix-list ibgp-filter permit 0.0.0.0/0 le 32
```

Three upstreams, unequal bandwidths: Summary

- Example based on many deployed working multihoming/loadbalancing topologies
- Many variations possible this one is:
 - Easy to tune
 - Light on border router resources
 - Light on backbone router infrastructure
 - Sparse BGP table ⇒ faster convergence

Service Provider Multihoming

ISP Workshops

Thank you!

End of Session