# 4 Byte ASN Development and Deployment 

SANOG 13<br>Lahore, Pakistan<br>22 January 2009

Srinivas (Sunny) Chendi
External Relations Manager

## 2-byte ASN and 4-byte ASN format

- Two-byte ASN (16-bit) 0 ~ 65535
- Four-byte ASN (32-bit) 0.0 ~ 65535.65535
- APNIC four-byte ASN range 2.0 ~ 2.1023


## Current distribution of two-byte ASNs



## Projected lifetime of remaining two-byte ASNs



## RIRs and 32-bit AS Numbers

- From 1 January 2007 the RIRs are allocating 32-bit AS numbers (upon specific request)
- From 1 January 2009 the RIRs will be allocating 32-bit AS numbers by default (leaving some 16-bit AS numbers available upon specific request)


## What does this imply?

If you are using16-bit AS
as most (all) of you are today
and you don't want to upgrade all your instances of BGP today
something you probably want to avoid (or at least defer!)
then you don't have to do anything at all!

NOTHING changes!

## Well, almost nothing!

## What's changed?

- BGP Update messages in the 16 -bit world
- May contain "lies" in parts of the AS Path
- May be larger in size due to tunneled additional information
- But prefix reachability information is still communicated between 16-bit and 32-bit BGP "realms"


## 32-bit AS Transition

- Think about this space as a set of NEW / OLD boundaries
- Define the NEW / OLD and the OLD / NEW transitions
- Preserve all BGP information at the transition interfaces
- Translate 32-bit AS Path information into a 16-bit representation
- Tunnel 32-bit AS Path information through 16-bit AS domain as an update attribute



## 32-bit / 16-bit BGP Example...

AS Path in the RIB (Routing Information Base)
i

## 32-bit / 16-bit BGP Example...

$$
\begin{array}{cc}
\text { OLD } & \text { OLD } \\
1221 & 4637
\end{array}
$$

AS Path in the RIB


## 32-bit / 16-bit BGP Example...



AS Path in the RIB


## 32-bit / 16-bit BGP Example...

AS Path in the RIB


## 32-bit / 16-bit BGP Example...



## 32-bit / 16-bit BGP Example...



AS Path in the RIB


## 32-bit / 16-bit BGP Example...

NEW NEW OLD
OLD
1221
4637

AS Path in the RIB


## 32-bit / 16-bit BGP Example...



AS Path in the RIB
$\square$


## 32-bit / 16-bit BGP Example...

## NEW

NEW


AS Path in the RIB


## 32-bit / 16-bit BGP Example

AS Path in the RIB

## AS 23456

- AS 23456 is going to appear in many 16-bit AS paths - both origin and transit

This is not an error - it's a 16-bit token holder for a 32-bit AS number

## The Route-Views View

```
route-views.oregon-ix.net>show ip bgp 203.10.62.0/24
```

BGP routing table entry for $203.10 .62 .0 / 24$, version 177310093
Paths: (43 available, best \#39, table Default-IP-Routing-Table)
Not advertised to any pepr
3277321635494637 1221 23456
194.85.4.55 from 194.85.4.55 (194.85.4.16)
Origin IGP, localpref 100, valid, external
Community: 3216:3000 3216:3004 3277:3216 3549:2141 3549:30840
750024974637 1221-23456
202.249.2.86 from 202.249.2.86 (203.178.133.115)
Origin IGP, localpref 100, walid, external
249336028128124637122123456
206.186.255.223 from 206.106.253.223 (206.186.255.223)
Origin IGP, localpref 100, valid, external
$2905701 \quad 12394637463746374637463746371221 \quad 23456$
196.7.106.245 from 196.7.106.245 (196.7.106.245)
Origin IGP, metric 0, localpref 100, valid, external

## Operational Support Systems

## What happens when you have a customer/ transit / peer with a 32-bit AS Number?

- What's in the route registries and what your customers tell you about their AS and what's in your OSS and your routing system will differ:
- E.g.: AS 1.2 needs to be auto-translated into AS 23456 in a number of places, including in your OSS
- Your BGP routers may need to peer with AS 23456, transit across AS 23456, and have multiple customers on AS 23456 at the same time, while also understanding that these refer to different external parties
- Your OSS might get terminally confused!


## Mixed environments

- No dynamic capability for 16/32-bit ASN mode shift
- You cannot flick from "16-bit OLD" to "32-bit NEW" mode within an active BGP session
- You need to clear the session and then perform a clean start to trigger the initial capability exchange


## 4 Byte AS Testing

- Tests have been undertaken using closed BGP networks, and over the public Internet
- Tests of 16-bit/32-bit transition boundaries in various permutations of transits and loops
- Current announcement of 203.10.62.0/24 originating from AS 2.2 to assist others in local testing of 32-bit BGP


## 32-bit Path Reconstruction

```
srv0# bgpctl show rib 203.10.62.0/24
```

flags: * = Valid, > = Selected, I = via IBGP, A = Announced
origin: i = IGP, e = EGP, ? = Incomplete


Experimentperformed on January 11 2007, with the assistance of Randy Bush and George Michaelson, using OpenBGPD 3.9 with 4Byte AS support patches as the origin and the observer points.

## Resources

- IETF Specification - RFC4893
- OpenBGPD patches
- http://www.potaroo.net/tools/bgpd
- Quagga patches
- http://quagga.ncc.eurodata.de/


## 



## http://icons.apnic.net

## Asia Pacific Network Information Centre <br> 

## sunny@apnic.net

