

- date with technology detail Has not got advance experience to work with
- network equipment • Are interested in
- Internetworking technologies

Asia

🖉 APNIC

- understanding of current
- knowledge of the procedures managing Internet
- To keep up updated knowledge of future Internet technology

1

Overview

📀 APNIC

Asia

📀 APNIC

Introduction to Internet Operation

-Internet Protocols - some revision

- IP addressing basic
- IP Routing basic
- Introduction to DNS & RevDNS
- Infrastructure Security Fundamental

Signal, Data and Information

- Data is transmitted over a physical network as a sequence of binary digits (bits - 0s and 1s).
- The "sending" process involves the source device generating a pattern of signals (voltages, light patterns, wavelengths).
- The pattern of signals generated represents the sequence of bits making up the data.
- These signals can be "read" by any device attached to
 the same physical actuals
- the same physical network."Reading" means identifying the signals to receive the
- same pattern of bits as generated by the sender.

re	What is Protocols
rk Information Cen	 All data is transmitted in the same way irrespective of what the data refers to, whether it is clear or encrypted.
ia Pacific Networ	 The data communication protocols define the structure or pattern for the data transferred – this gives it its meaning.
As	 The Protocols define
PNIC	 functions or processes that need to be carried out in order to implement the data exchange and the
∀ ⊘	 information required by these processes in order for them to accomplish this

Protocol Models

- In the late 1970s the ISO (International Standards Organisation) introduced a model defining the functions for data communications between two computers in a 7 layer model - The OSI (Open System Interconnection) Model
- Not a protocol but a framework intended to facilitate the design of protocols for inter-computer communication.
 Defines the processes required at each of the
- modularised layers
- OSI is "protocol independent"

Asia

📎 APNIC

Packets

Asia

C APNI

N

- A packet then contains a set of data made of the various headers from each layer including the data generated by the application layer.
- The packet is "built" during a sending process when each layer determines the information needed for its tasks, and adds this header information
- · The layer will then take this information, with any other data it might have received from a higher layer, and pass it as one set of data to a lower layer.
- This process is then repeated and is called encapsulation

Internet Protocol (IP)

- IP is an unreliable, connectionless delivery protocol - A best-effort delivery service - No error checking or tracking (no guarantees – Post Office) Every packet treated independently
 Can follow different routes to same destination IP leaves higher level protocols to provide reliability services (if needed) IP provides three important definitions: - basic unit of data transfer specifying exact format of the headers
 routing function
 choosing path over which data will be sent APNI rules about delivery
 how IP datagrams should be processed
 how to deal with unusual events (errors) R

Asia Pacific Network Information Centre	 IP D That part of a packe from the higher laye datagrams IP specifies the heat tasks - information i - eg source and de It has nothing to do transport arbitrary of 	Action of the terms of t
4IC	Datagram header	Datagram data area
🖉 APN		

Centre	IPv4 Datagram header fields							
nation	Bit 0		Bit 15	Bit 16		Bit 31		
c Inform	Version (4)	Header Length (4)	Priority & Type of Service (8)	Total Length (16)			Î	
Networl		Identifica	tion (16)	Flags (3)	ags Fragment offset (13)			
Pacific	Time to live (8)		Protocol (8)	Header checksum (16)		i)	20 Byt	
Asia	Source IP Address (32)							
	Destination IP Address (32)						ļļ	
n Z	Options (0 or 32 if any)							
📎 AP	Data (varies if any)							

IPv6 header	
Companison between IPv4 IPv4 Header	Pv6 Header
Version IHL Type of Service Total Length 4 bits Bbits 16bits	Version Traffic Class Flow Label 4bits 8 bits 20 bits
Identification Flags Fragment Offset 16 bits 4 bits 12 bits	Payload Length Next Header Hop Limit 16 bits 8 bits 8 bits
TTL Protocol Header Header Checksum 8 bits 8 bits 16 bits	Source Address 128 bits
Source Address 32 bits	
Destination Address 32 bits	
IP options 0 or more bits	
Ni - D Mander Length	Destination Address 128 bits
TTL=Time to Live Enhanced in IPv6	
Enhanced in IPv6	
Enhanced in IPv6	

entre

Asia

🗞 APNIC

Asia Pacific

📀 APNIC

- Introduction to Internet Operation
 - Internet Protocols some revision
 - -IP addressing basic
 - IP Routing basic
 Introduction to DNS & RevDNS
 - Infrastructure Security Fundamental

Overview

- IP addressing Issues and solution
- Variable Length Subnet Mask (VLSM)
 Written exercise : VLSM calculation
- Summarisation of routes
- Classless InterDomain routing (CIDR)
- Internet registry IP management procedure
 - Written exercise : Route summarisation

Centre	Variable Length Subnet Mask
Information 1	 Allows the ability to have more than one subnet mask within a network
etwork	Allows re-subnetting
cific N	- create sub-subnet network address
isia Pa	 Increase the routes capability
4	 Addressing hierarchy
υ	- Summarisation
PZ	
<	
N	

Calculating Subnet 192.16 Subnet mask 	VLSM example 8.0.0/24 into smaller s with /30 (point-to-point)	(cont.) subnet
Description	Decimal	Binary
Network Address	192.168.0.0/30	x.x.x.00000000
1 st valid IP	192.168.0.1/30	x.x.x.00000001
2 nd valid IP	192.168.0.2/30	x.x.x.00000010
Broadcast address	192.168.0.3/30	x.x.x.00000011

irk Information Centre	Calculating VLSM example (cont.) Subnet 192.168.0.0/24 into smaller subnet Subnet mask with /27 					
fic Netwo		Description	Decimal	Binary		
Asia Paci		Network Address	192.168.0.32/27	x.x.x.00000000		
		Valid IP range 192,168,0,33 - 192,168,0,62		x.x.x.00000001		
L N I C				x.x.x.00000010		
A Ø		Broadcast address	192.168.0.63/30	x.x.x.00011111		

Calculating VLSM example (cont.) Subnet 192.168.0.0/24 into smaller subnet – Subnet mask with /27						
Description	Decimal	VSLM	Host	Host range		
1 st subnet	192.168.0.0/27	x.x.x.000		0-31		
2 nd subnet	192.168.0.32/2 7	x.x.x.001	00000	31-63		
3 rd subnet	192.168.0.64/2 7	x.x.x.010		64-95		
4th subnet	192.168.0.96/2	x.x.x.011	1	96-127		

- Support for easy troubleshooting, upgrades and manageability of networks
- Performance optimisation

Asia Pacific

📀 APNIC

- Scalable and more stable
- Less network resources overhead (CPU, memory, buffers, bandwidth)
- Faster routing convergence

Centre	Classless & classful addressing							
formation	<u>Classful</u>	Clas	Best Current Practice					
Asia Pacific Network In	A 138 networks x 16M Hosts 16K networks x 64K hosts B 2M networks x 256 hosts C 1	Addresses 8 16 32 64 128 256	Prefix /29 /28 /27 /26 /25 /24	Classful 1 C	Net mask 255.255.255.248 255.255.255.240 255.255.255.255.224 255.255.255.128 255.255.255.128 255.255.255.0			
🗞 APNIC	Obsolete • inefficient • depletion of B space • too many routes from C space	 4096 8192 16384 32768 65536 * See back of slide for • Network	 /20 /19 /18 /17 /16 worklet for complet	 16 Cs 32 Cs 64 Cs 128 Cs 1 B ete chart ries may co	255.255.24 255.255.292 255.255.192 255.255.128 255.255.00			

Prefix routing / CIDR

 Prefix routing commonly known as classless inter domain routing (CIDR) - It allows prefix routing and summarisation with the routing tables of the

- Internet
- RFCs that talks about CIDR

entre

Asia

📀 APNIC

- RFC 1517 Applicability statement for the implementation of CIDR
- RFC 1518 Architecture for IP address allocation with CIDR
- RFC 1519 CIDR : an address assignment and aggregation strategy
 RFC 1520 Exchanging routing information access provider boundaries in a CIDR environment

entre	Route summarisation
ork Information C	 Allows the presentation of a series of networks in a single summary address.
🗞 APNIC Asia Pacific Netwo	 Advantages of summarisation Faster convergence Reducing the size of the routing table Simplification Hiding Network Changes Isolate topology changes

entre	Route summ	arisation	all a
stwork Information C	Subnet 192.168 then to become	.0.0/24 and 192.168. a bigger block of add	1.0/24 combining Iress "/23"
cific Ne	Network	Subnet Mask	Binary
sia Pac	192.168.0.0	255.255.255.0	x.x.0000000.x
<	192.168.1.0	255.255.255.0	x.x.00000001.x
υ			
ΓN	Summary	192.168.0.0/23	x.x.0000000.x
⊲ ⊘	192.168.0.0	255.255.254.0	x.x.0000000.x

Configuring summarisation
 Manual configuration is required with the use of newer routing protocols
 Each of the routing protocols deal with it in a slightly different way
 All routing protocols employ some level of automatic summarisation depending on the routing protocol behavior (be cautious about it)

Manual summarisation

📎 APNIC

entre

Asia

📀 APNIC

APNIC

 Manual summarisation uses by OSPF are more sophisticated.

- Sends the subnet mask including the routing update which allows the use of VLSM and summarisation

· Performs a lookup to check the entire database and acts on the longest match

Discontiguous networks A network not using routing protocol that support VLSM creates problem - Router will not know where to send the traffic - Creates routing loop or duplication • Summarisation is not advisable to network that are Asia discontiguous - Turn off summarisation

- Alternative solution but understand the scaling limitation
 Find ways to re-address the network
- Can create disastrous situation

- Introduction to Internet Operation
 - Internet Protocols some revision
 - IP addressing basic

Centre

Asia

📀 APNIC

Asia Pacific

📀 APNIC

- -IP Routing basic
- Introduction to DNS & RevDNS
- Infrastructure Security Fundamental

Objectives

- To be able to gain knowledge about the foundation of the routing protocols
- Classify the difference between a classful and classless routing architecture
- Compare distance vector and link-state protocol operation
- Describe the information written inside the routing table

Routing protocol behavior

Asia Pacif

APNIC

- Mechanism to update Layer 3 routing devices, to route the data across the best path
- Learns participating routers advertised routes to know their neighbors
- Learned routes are stored inside the routing table

Distinction between *routed* and *routing* protocols

Routed protocols

Centre

Asia F

📀 APNIC

- Layer3 datagram that carry the information required in transporting the data across the network
- Routing protocols
 - Handles the updating requirement of the routers within the network for determining the path of the datagram across the network

Routed protocol	Routing protocol
AppleTalk	RTMP, AURP, EIGRP
IPX	RIP, NLSP, EIGRP
Vines	RTP
DecNet IV	DecNet
IP	RIPv2, OSPF, IS-IS, BGP and (Cisco Systems proprietary) EIGRP,

Metric field

Asia Pacific

📀 APNIC

- To determine which path to use if there are multiple paths to the remote network
- · Provide the value to select the best path
- But take note of the administrative distance selection process ☺

Centre	Routing protocol metrics			
rmation	Routing protocol	Metric		
ork Info	RIPv2	Hop count		
ic Netw	EIGRP	Bandwidth, delay, load, reliability, MTU		
isia Pacit	OSPF	Cost (the higher the bandwidth indicates a lowest cost)		
	IS-IS	Cost		
	L	I		
APA				
Ø				

Route sources	Default distance
Connected interface	0
Static route out an interface	0
Static route to a next hop	1
External BGP	20
IGRP	100
OSPF	110
IS-IS	115
RIP v1, v2	120
EGP	140
Internal BGP	200
Unknown	255

-

Principles of addressing

- Separate customer & infrastructure address pools
 - Manageability

entre

acific

Asia

📀 APNIC

Different personnel manage infrastructure and assignments to customers

Scalability

• Easier renumbering - customers are difficult, infrastructure is relatively easy

Purpose of naming

- · Addresses are used to locate objects
- Names are easier to remember than numbers
- You would like to get to the address or other objects using a name
- DNS provides a mapping from names to resources of several types

🐼 APNIC

entre

📀 APNIC

Asia

Naming History1970's ARPANET

- Host.txt maintained by the SRI-NIC
- pulled from a single machine
- Problems
 - traffic and load
 - Name collisions
 - Consistency

 DNS created in 1983 by Paul Mockapetris (RFCs 1034 and 1035), modified, updated, and enhanced by a myriad of subsequent RFCs

DNS A lookup mechanism for translating objects into other objects A globally distributed, loosely coherent, scalable, reliable, dynamic database Comprised of three components

- A "name space"
- Converse making that normal
- Servers making that name space available
- Resolvers (clients) which query the servers about the name space

entre	DNS Features: Global Distribution
Information C	 Data is maintained locally, but retrievable globally
fic Network	- No single computer has all DNS data
Asia Paci	 DNS lookups can be performed by any device
📀 APNIC	Remote DNS data is locally cachable to improve performance

DNS Features: Loose Coherency

entre

📀 APNIC

- The database is always internally consistent

 Each version of a subset of the database (a zone) has a serial number
 The serial number is incremented on each database change
- Changes to the master copy of the database are replicated according to timing set by the zone administrator
- Cached data expires according to timeout set by zone administrator

DNS Features: Scalability No limit to the size of the database One server has over 20,000,000 names Not a particularly good idea No limit to the number of queries 24,000 queries per second handled easily Queries distributed among masters, slaves, and caches

entre	DNS Features: Reliability
twork Information C	 Data is replicated – Data from master is copied to multiple slaves
Asia Pacific Ne	 Clients can query Master server Any of the copies at slave servers
📎 APNIC	Clients will typically query local caches

DNS Features: Dynamicity

entre

Asia Pacific

📀 APNIC

Asia Pacific

APNIC

Database can be updated dynamically
 _Add/delete/modify of any record

 Modification of the master database triggers replication

Only master can be dynamically updated
Creates a single point of failure

Concept: DNS Names

- How names appear in the DNS
 Fully Qualified Domain Name (FQDN)
 www.APNIC.NET.
 labels apparated by data
 - labels separated by dots
- DNS provides a mapping from FQDNs to resources of several types
- Names are used as a key when fetching data in the DNS

Delegation

Centre

Asia

📀 APNIC

📀 APNIC

- Administrators can create subdomains to group hosts

 According to geography, organizational affiliation or any other criterion
- An administrator of a domain can delegate responsibility for managing a subdomain to someone else

- But this isn't required

- The parent domain retains links to the delegated subdomain
- The parent domain "remembers" who it delegated the subdomain to

Authority is delegated from a parent and to a child

Concept: Name Servers Name servers answer 'DNS' questions

- Several types of name servers
 - Authoritative servers

Centre

Asia

📀 APNIC

- master (primary)
- slave (secondary)
- (Caching) recursive servers
- also caching forwarders
- Mixture of functionality

entre	Concept: Resource Records
Information C	 Resource records consist of it's name, it's TTL, it's class, it's type and it's RDATA
letwork	• TTL is a timing parameter
acific N	 IN class is widest used There are multiple types of PP records
Asia P	 Everything behind the type identifier is called rdata
📎 APNIC	www.apnic.net.

min.apnic.net.
rial
hours
urs
ays
ache z nours ,
apnic.net.
ripe.net.
.0.1.162
.0.3.25
rdata

Centre	Concept: TTL and other Timers
Asia Pacific Network Information C	 TTL is a timer used in caches An indication for how long the data may be reused Data that is expected to be 'stable' can have high TTLs
🗞 APNIC	 SOA timers are used for maintaining consistency between primary and secondary servers

To remember...

Asia Pacific

- Multiple authoritative servers to distribute load and risk:
 - Put your name servers apart from each other
- Caches to reduce load to authoritative servers and reduce response times
- SOA timers and TTL need to be tuned to needs of zone. Stable data: higher numbers

Performance of DNS

- · Server hardware requirements
- · OS and the DNS server running
- How many DNS servers?
- How many zones expected to load?
- How large the zones are?
- Zone transfers
- Where the DNS servers are located?
- Bandwidth

R

🖉 APNIC

Asia

APNIC

Performance of DNS

- Are these servers Multihomed?
- How many interfaces are to be enabled for listening?
- How many queries are expected to receive?
- Recursion
- Dynamic updates?
- DNS notifications

Writing a zone file Zone file is written by the zone administrator Zone file is read by the master server and it's content is replicated to slave servers What is in the zone file will end up in the database Because of timing issues it might take some time before the data is actually visible at the client side

35

Centre	Zone file short cuts: repeating last name
ia Pacific Network Information	apnic.net. 3600 IN SOA NS1.apnic.net. admi n\.email.apnic.net. (200221301 ; serial 1h ; refresh 300 ; retry 1W ; expiry 3600) ; neg. answ. Ttl 3600 IN NS NS1.apnic.net. 3600 IN NS NS2.apnic.net. 3600 IN NX 50 mail.apnic.net. 3600 IN NX 50 mail.apnic.net.
Asi	3600 IN TXT "Demonstration and test zone" NS1.apric.net. 3600 IN A 203.0.0.4 NS2.apric.net. 3600 IN A 193.0.0.202
\cup	localhost.apnic.net. 4500 IN A 127.0.0.1
🖉 APNIG	NS1.apnic.net. 3600 IN & 203.0.0.4 www.apnic.net. 3600 IN CNAME IN.apnic.net.

Centre	Zone file short cuts: Eliminate IN
Asia Pacific Network Information	<pre>\$TTL 3600 ; Default TTL directive \$ORIGIN apnic.net. @ SOA NSI admin\.email.sanog.org. (2002021301 ; serial h ; refresh 30M ; retry W ; expiry 3600) ; neg. answ. Ttl NS NS1 NS NS2 MX 50 mailhost MX 150 mailhost2</pre>
υ	TXT "Demonstration and test zone" NS1 A 203.0.0.4 NS2 A 193.0.0.202
Ī	localhost 4500 A 127.0.0.1
AP	NS1 A 203.0.0.4 www CNAME NS1
Ø	

Overview

entre

📀 APNIC

Asia Pacific

📀 APNIC

Principles

- Creating reverse zones
- Setting up nameservers
- Reverse delegation procedures

What is 'Reverse DNS'?

- 'Forward DNS' maps names to numbers

 svc00.apnic.net -> 202.12.28.131
- 'Reverse DNS' maps numbers to names – 202.12.28.131 -> svc00.apnic.net

- Details can be different

Centre	Creating reverse zones - contd
nation	Files involved
Inforn	– Zone files
stwork	Forward zone file
ž Ľ	– e.g. db.domain.net
Pacif	Reverse zone file
٨sia	– e.g. db.192.168.254
	– Config files
\sim	• <named.conf></named.conf>
ž	– Other
AP	Hints files etc.
N	- Root.hints

41

\$ORIGIN	1.168.192.in-addr.arpa.
@ 3600	IN SOA test.company.org. (
	sys\.admin.company.org. 2002021301 : serial
	1h ; refresh
	30M ; retry
	1W ; expiry
	3600) ; neg. answ. ttl
NS ns	.company.org.
NS ns	2.company.org.
1 PTR	gw.company.org.
ro	uter.company.org.
2 PTR	ns.company.org.
i auto do	merate: 65 PTR host65.company.org

APNIC & ISPs responsibilities

APNIC

entre

Asia

🖉 APNIC

- Manage reverse delegations of address block distributed by APNIC
- Process organisations requests for reverse delegations of network allocations
- Organisations
 - Be familiar with APNIC procedures
 - Ensure that addresses are reverse-mapped
 - Maintain nameservers for allocations
 - Minimise pollution of DNS

Centre	Subdomains of in-addr.arpa domain
acific Network Information (Example: an organisation given a /20 192.168.0.0/20 (a lot of zone files!) – have to do it per /24) Zone files
Asia P	0.168.192.in-addr.arpa. 1.168.192.in-addr.arpa. 2.168.192.in-addr.arpa.
📎 APNIC	: : 15.168.192.in-addr.arpa.

Reverse delegation procedures

- Standard APNIC database object,
 can be updated through MyAPNIC, Online form or via email.
- Nameserver/domain set up verified before being submitted to the database.
- Protection by maintainer object
- Zone file updated instantly

Asia

📀 APNIC

on Centre	Whois d	Iomain object
it at i	domain:	28.12.202.in-addr.arpa
lefe	descr:	in-addr.arpa zone for 28.12.202.in-addr.arpa
÷.	admin-c:	DNS3-AP Contacts
e tw	tech-c:	DNS3-AP
Z v	zone-c:	DNS3-AP
icifi.	nserver:	ns.telstra.net
a P	nserver:	rs.arin.net
Asi	nserver:	ns.myapnic.net
	nserver:	svc00.apnic.net
	nserver:	ns.apnic.net
U	mnt-by:	MAINT-APNIC-AP
Ī	mnt-rower:	MAINT-DNS-AP
	changed:	Applic.net 19990810 Maintainers
₹	source.	(protection)
N		
-		

Security	for an	ISP
----------	--------	-----

- An enterprise network security is relatively simpler comparing to an ISP's
 - Main objective: protecting the enterprise's network from outside intrusions
- An ISP's security concerns are much broader
 - Security measures will affect ISP's network operation
 But security threats are real and need to be protected against
 - ISPs are very visible targets for malicious and criminal attacks
 Must protect themselves
- Must help to protect their customers

Asia

📀 APNIC

entre

📀 APNIC

133

Asia

📀 APNIC

 Must minimise the risk of their customers from becoming problems to others on the Internet

Security for an ISP

- No network is ever fully secure or protected
- There is always a RISK factor
- ISPs need to know how to use tools to build resistance
 - Resist attacks and intrusion attempts to their network
- Resist long enough for internal security procedures to be activated to track the incident and apply counters
 - incident and apply counters

First of all...

- Introduction to security issues
 Attack type
 - Terms and definitions
 - Security goals and services
- Risk analysis and quantification

Eavesdropping Attack

entre

Asia

📀 APNIC

140

Asia Pacific

📀 APNIC

- Clear text data exchange between source and destination
- Hackers/attacker will be in the middle (On the network)

ce: Complete Cisco VPN Configuration Guide

Reference: Complete Cisco VPN Configuration Guid

- Sniff all clear text packet
- Used tools i.e protocol analyzer, promiscuous LAN card and PC

Eavesdropping Attack (Cont)

Possible solutions are:

- One time password (OTP) to protect password information (Not other data).
- Data encryption i.e SSL

47

c Network Information Centre	Eavesdropping Attack (Cont)
	Two type of encryption – Link encryption (L2)
	On point to point link entire frame (PPP /HDLC) in encrypted
Pacif	 Packet payload encryption (L3)
Asia	Only Packet payload is encrypted so it could be routed across L3 network or Internet
📀 APNIC	 Example encryption RC4, DES, 3DES, AES
	 Packet payload/L3 encryption is most common in Internet because only source and destination will do encryption/decryption

Masquerading Attack

142

entre

Asia

📀 APNIC

143

Asia Pacific

📎 APNIC

- Hacker/attacker spoof someone's identity
- Change source address (L2 or L3)
- Typically combine with DoS attack
- Use specialized software to generate packet/frame changing IP/MAC address of the originating PC

Reference: Complete Cisco VPN Configuration G

Reference: Complete Cisco VPN Configuration Gu

 Masquerade identity with authorized external source IP/MAC to get access

Masquerading Attack (Cont)

- To control returning traffic attack might be combined with routing attack
- To initiate DoS attack hacker/attacker use internal address as source of packet
- In L2 network ARP spoofing is used to redirect L2 traffic

Masquerading Attack (Cont)

Asia

📀 APNIC

📀 APNIC

Asia

📀 APNIC

- Need packet integrity check to handle masquerading attack
- Common solution is to use hash function
- Hash function use a one way hash with a shared key
- Only the device have the key will be able to create/verify hash value
- Most common hashing functions are MD5, SHA

Reference: Complete Cisco VPN Configuration Guide

ence: Complete Cisco VPN Configuration G

erence: Complete Cisco VPN Configuration

Man-in-the Middle Attack

 Attacker can sit in the middle of source and destination and initiate following two types of Man-in-the Middle attacks:

Session reply attack

- Session hijack attack

 For both type of attack hacker need access to the network (i.e LAN/Internet)

Man-in-the Middle Attack (Cont)

Session hijack attack
 Attacker insert him in to an established connection between sender and receiver and hijack the connection. Require a specialized TCP sequence number generating software.

 This is much easier in UDP, ICMP protocol (No ACK)

entre	Man-in-the Middle Attack (Cont)
Information C	To handle these type of attack generate randomize TCP sequence number
Asia Pacific Network	 TCP sequence number is 32bit so around 2 billion possible combination. Practically impossible to guess next sequence number.
APNIC	VPN is best option to protect this attack.
2 148	Reference: Complete Cisco VPN Configuration Gu

Man-in-the Middle Attack (Cont)

Session reply attacks

entre

🖉 APNIC

Asia Pacific

📎 APNIC

Attacker intercepts traffic from the source to the real destination by combination of spoofing and routing attack. Then pretend to be the real destination, capture all information from source and redirect it to real destination including TCP session reply.
Attacker use Java or ActiveX script to

 Attacker use Java or ActiveX script to initiate this attack

S ATTACK Reference: Complete Cisco VPN Configuration Guide

What is Key

• A key is used to protect information.

 A data key can performs a similar function as a password used to protect a user account or a PIN (personal identification number) used with your ATM card.

• Normally, the longer the key, the more secure the protection it can provide.

Symmetric Keys

entre

Asia

📀 APNIC

Asia Pacific

📎 APNIC

- Symmetric keys use the same single key to provide a security function to protect information
- An encryption algorithm that uses symmetric keys uses the same key to encrypt and decrypt information
- The algorithm used is fairly simple, very efficient and very quick

Symmetric Keys

- Encryption algorithms and standards that use symmetric keying are: DES, 3DES, CAST, IDEA, RC-4, RC-6, Skipjack, and AES.
- MD5 and SHA are examples of hashing functions that use symmetric keying.

Asymmetric Keys

entre

Asia

🖉 APNIC

Asia Pacific

📀 APNIC

- Asymmetric keying uses two keys:
 - Private keys
 - Public keys
- The private key is kept secret by the source to decrypt data sent to it
- The public key is given out to other by the source devices to encrypt the data to be sent to the source

Asymmetric Keys example

- RSA public keying—to produce digital signatures and to perform encryption
- Digital Signature Algorithm (DSA)
- Diffie-Hellman (DH)— This is used by the Internet Key Exchange (IKE) protocol in IPsec to exchange keying information.

