
Security & Cryptographic
Methods

SANOG 16, July 15th - 19th 2010
Paro, Bhutan

Phil Regnauld / slides by Hervey Allen

NSRC@SANOG
9 Colombo

Core Security Principals

What are they?

(1)-- Confidentiality

(2)-- Integrity

(3)-- Authentication
 - Access Control

- Verification

(4)-- Availability

NSRC@SANOG
9 Colombo

Cryptographic Methods

Critical for confidentiality, integrity, and
authentication.

Indirectly they lead to better availability.

What are some methods and tools?

ssh
ssl

ciphersdigital certificates

digital signatures
md5/sha1

pgp...

public keysprivate keys hashes

des/3des/blowfish

...Do you have any more?

NSRC@SANOG
9 Colombo

What We'll Cover

● Ciphers
● Hashing (Integrity checks)
● Key generation
● Public/Private Keys
● Digital signatures
● TLS/SSL
● SSH
● PGP

NSRC@SANOG
9 Colombo

Ciphers

 Private Key/Symmetric Ciphers

clear
text

clear
text

cipher text

K K

The same key is used to encrypt the document before sending
and to decrypt it once it is received

NSRC@SANOG
9 Colombo

Interception of the Cipher Text

How would they recover the clear text?

– Brute force attack
– Steal the cipher
– Others?

NSRC@SANOG
9 Colombo

Examples of Symmetric Ciphers

DES - 56 bit key length, designed by US
security service

3DES - effective key length 112 bits

AES (Advanced Encryption Standard) - 128
to 256 bit key length

Blowfish - 128 bits, optimised for fast
operation on 32-bit microprocessors

IDEA - 128 bits, patented (requires a licence
for commercial use)

NSRC@SANOG
9 Colombo

Features of Symmetric Ciphers

● Fast to encrypt and decrypt, suitable for
large volumes of data

● A well-designed cipher is only subject to
brute-force attack; the strength is therefore
directly related to the key length

● Current recommendation is a key length of
at least 90 bits

● i.e. to be fairly sure that your data will be safe for at
least 20 years

● Problem - how do you distribute the keys?

NSRC@SANOG
9 Colombo

Symmetric Cipher Key
Distribution

So, how do you distribute a So, how do you distribute a
symmetric key?symmetric key?

● By handBy hand
● Other?Other?

NSRC@SANOG
9 Colombo

Hashing
One-Way Encryption

clear
text

Munging the document gives a short
message digest (checksum). Not possible to go
back from the digest to the original document.

Fixed length hash
or message digest

hashing
function

NSRC@SANOG
9 Colombo

Hashing
one-way encryption: another example

Note th e s ig n ific a nt c h a ng e in th e h a s h s um for m inor c h a ng e s in th e
input. Note th a t th e h a s h s um is th e s a m e le ng th for va rying input s iz e s .
Th is is e xtre m e ly us e fu l.

*Ima g e c ourte s y Wikipe dia .org .

NSRC@SANOG
9 Colombo

Examples

● Unix crypt() function, based on DES

● MD5 (Message Digest 5) - 128 bit hash

● SHA1 (Secure Hash Algorithm) - 160 bits

● Until August 2004, no two documents had been
discovered which had the same MD5 digest!

● Such "collisions" are not a major problem as yet
● No collisions have yet been found in SHA-1

● Still no feasible method to create any document
which has a given MD5 digest

NSRC@SANOG
9 Colombo

q.) So what use is this?
a.) Integrity checks

● You can run many megabytes of data through
MD5 and still get only 128 bits to check. It's
fast.

● You can run many megabytes of data through
SHA-1 and still get only 160 bits to check. It's
slower, but more secure.

● An attacker cannot feasibly modify your file and
leave it with the same checksum*.*.
 Gives your document a unique "fingerprint"* Even with the recent attack, at best the attacker could add some corruption and leave the

MD5sum unchanged. They could not insert any data of their own choosing.

NSRC@SANOG
9 Colombo

Exercise

● Exercise: on your machine type
cat /etc/motd

● Look at your neighbour's machine. Is their file
exactly the same as yours? Can you be sure?

md5 /etc/motd (maybe use sha1sum)

● Compare the result with your neighbour

● Now change ONE (1) character in /etc/motd and
repeat the md5 test (use vi or joe to edit the file)

Note: Under Linux the command is md5sum

NSRC@SANOG
9 Colombo

Software announcements often contain an
MD5 checksum

It's trivial to check

Protects you against hacked FTP servers and
download errors

$ md5 exim-4.43.tar.bz2
MD5 (exim-4.43.tar.bz2) = f8f646d4920660cb5579becd9265a3bf
$

Could the attacker have modified
the announcement E-mail as well?

NSRC@SANOG
9 Colombo

q.) So what use is this?
a.) Encrypted password storage

● We don't want to keep cleartext passwords if possible;
the password file would be far too attractive a target

● Store hash(passwd) in /etc/master.passwd

● When user logs in, calculate the hash of the password
they have given, and compare it to the hash in the
password file

● If the two hashes match, the user must have entered
the correct password

● Can an attacker still recover the password?

NSRC@SANOG
9 Colombo

q.) So what use is that?
a.) Generating encryption keys

● Users cannot remember 128 bit binary encryption
keys

● However they can remember "passphrases"

● A hash can be used to convert a passphrase into a
fixed-length encryption key

● The longer the passphrase, the more "randomness" it
contains and the harder to guess. English text is
typically only 1.3 bits of randomness per character.
http://axion.physics.ubc.ca/pgp-attack.html
http://www.iusmentis.com/technology/encryption/pgp/pgpattackfaq/
http://www.schneier.com/paper-personal-entropy.html

http://axion.physics.ubc.ca/pgp-attack.html
http://www.iusmentis.com/technology/encryption/pgp/pgpattackfaq/

NSRC@SANOG
9 Colombo

Generating Encryption Keys

Passphrase
entered by

user

128-bit
keyMD5

hash

● Every passphrase generates a different 128-bit key
● Repeat with SHA-1 to get different 160-bit keys

NSRC@SANOG
9 Colombo

Sample Symmetric Cipher
Creation Using PGP*

vi foobar.txt
gpg -c foobar.txt
Enter passphrase: ding/dong 479 fruitbat
Repeat passphrase: ding/dong 479 fruitbat
ls foobar.txt*
foobar.txt foobar.txt.gpg
rm foobar.txt
rm: remove regular file `foobar.txt'? y

gpg foobar.txt.gpg
gpg: CAST5 encrypted data
Enter passphrase: ding/dong 479 fruitbat

cat foobar.txt
 ("gpg --version" shows the ciphers available)

(* What does “PGP” stand for?)

NSRC@SANOG
9 Colombo

Example (Public Key):
GPG With Symmetric Cipher

clear
text

clear
textk1

(public key)

k2

(private key)

cipher
text

One key is used to encrypt the document,
a different key is used to decrypt it.

This is a big deal!

NSRC@SANOG
9 Colombo

Public key and Private key
● The Public key and Private key are

mathematically related (generated as a pair)

● It is easy to convert the Private key into the
Public key. It is not easy to do the reverse.

● Key distribution problem is solved: you can
post your public key anywhere. People can use
it to encrypt messages to you, but only the
holder of the private key can decrypt them.

● Examples: RSA, Elgamal (DSA)

NSRC@SANOG
9 Colombo

Use for Authentication:
Reverse the Roles of the Keys

clear
text

clear
textk2

(private key)

k1

(public key)

cipher
text

If you can decrypt the document with the public key, it
proves it was written by the owner of the private key
(and was not changed).

NSRC@SANOG
9 Colombo

Key Lengths

● Attacks on public key systems involve
mathematical attempts to convert the public
key into the private key. This is more efficient
than brute force.

● 512-bit has been broken

● Recent developments suggest that 1024-bit keys
might not be secure for long

● Recommend using 2048-bit keys

NSRC@SANOG
9 Colombo

Protecting the Private Key
● The security of the private key is paramount:

keep it safe!

● Keep it on a floppy or a smartcard?

● Prefer to keep it encrypted if on a hard drive

● That means you have to decrypt it (using a
passphrase) each time you use it

● An attacker would need to steal the file
containing the private key, AND know or guess
the passphrase

NSRC@SANOG
9 Colombo

Protecting the Private Key

k2
(encrypted

on disk)

Passphrase
entered by

user

k2
ready
for use

hash

symmetric
cipher

key

K2
= private key*Such as MD5, SHA-1, etc.

NSRC@SANOG
9 Colombo

Questions?

NSRC@SANOG
9 Colombo

Public Key Cryptosystems are
Important

● But they require a lot of computation
(expensive in CPU time)

● So we use some tricks to minimise the
amount of data which is encrypted

NSRC@SANOG
9 Colombo

When encrypting:

Use a symmetric cipher with a random key (the
"session key"). Use a public key cipher to
encrypt the session key and send it along with
the encrypted document.

k1 k2

encrypted
session key

cipher
text

random
session key

ks ks

(private)(public)

NSRC@SANOG
9 Colombo

When authenticating:

Take a hash of the document and encrypt only
that. An encrypted hash is called a "digital
signature"

k2 k1

digital
signature

COMPARE

hash hash

(public)(private)

NSRC@SANOG
9 Colombo

Digital Signatures have many
uses, for example:

● E-commerce. An instruction to your bank to transfer
money can be authenticated with a digital signature.
Legislative regimes are slow to catch up

● A trusted third party can issue declarations such as
"the holder of this key is a person who is legally
known as Alice Hacker"

Like a passport binds your identity to your face

● Such a declaration is called a "certificate"

● You only need the third-party's public key to check the
signature

NSRC@SANOG
9 Colombo

Do public keys really solve the key
distribution problem?

● Often we want to communicate securely with a
remote party whose key we don't know

● We can retrieve their public key over the
network

● But what if there's someone in between
intercepting our traffic?

public key

NSRC@SANOG
9 Colombo

The "man-in-the-middle" Attack

➔ Passive sniffing is no problem

➔ But if they can modify packets, they can substitute a
different key

➔ The attacker uses separate encryption keys to talk to
both sides

➔ You think your traffic is secure, but it isn't!

key 1 key 2

Attacker sees all traffic in plain text - and can modify it!

NSRC@SANOG
9 Colombo

TLS/SSL – Digital Certificates

NSRC@SANOG
9 Colombo

Digital Certificates can solve the man-
in-the-middle problem

● Problem: I have no prior knowledge of the
remote side's key, so cannot tell if a different one
has been substituted

● But maybe someone else does

● A trusted third party can vouch for the remote
side by signing a certificate which contains the
remote side's name & public key

● I can check the validity of the certificate using
the trusted third party's public key

NSRC@SANOG
9 Colombo

Example: TLS (SSL) web server with
digital certificate

● I generate a private key on my webserver

● I send my public key plus my identity (my
webserver's domain name) to a certificate
authority (CA)

● The CA manually checks that I am who I say I
am, i.e. I own the domain

● They sign a certificate containing my public key,
my domain name, and an expiration date

● I install the certificate on my web server

NSRC@SANOG
9 Colombo

When a client's web browser
connects to me using HTTPS:

● They negotiate an encrypted session with me, during
which they learn my public key

● I send them the certificate

● They verify the certificate using the CA's public key,
which is built-in to the browser

● If the signature is valid, the domain name in the URL
matches the domain name in the certificate, and the
expiration date has not passed, they know the
connection is secure

● (Q: why is there an expiration date?)

NSRC@SANOG
9 Colombo

The security of TLS depends on:

● Your webserver being secure
● So nobody else can obtain your private key

● The CA's public key being in all browsers

● The CA being well managed
How carefully do they look after their own private keys?

● The CA being trustworthy
Do they vet all certificate requests properly?
Could a hacker persuade the CA to sign their key pretending

to be someone else? What about a government?
Do you trust them? Why?

NSRC@SANOG
9 Colombo

Testing TLS (SSL) Applications
● There is an equivalent of telnet you can use: openssl

s_client

● It opens a TCP connection, negotiates TLS, then lets you
type data

$ openssl s_client -connect ws.edu.isoc.org:443
CONNECTED(00000003)
depth=0 /C=US/ST=Virginia/L=Reston/O=Internet Society/CN=ws.edu.
isoc.org/emailAddress=admin@ws.edu.isoc.org
...
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA

GET / HTTP/1.0
Host: ws.edu.isoc.org

HTTP/1.1 302 Found
Date: Sat, 01 Jan 2005 15:26:08 GMT
...

NSRC@SANOG
9 Colombo

Limitations of s_client

● Works only for protocols which use TLS
from the very beginning of the connection

These protocols are identified by using a different port
number to the non-encrypted version

(HTTP port 80), HTTPS port 443

(POP3 port 110), POP3S port 995

● Other protocols start unencrypted and
then "upgrade" the connection to encrypted
on request

e.g. SMTP has a "STARTTLS" command

s_client is not usable for these

NSRC@SANOG
9 Colombo

SSH

NSRC@SANOG
9 Colombo

SSH Uses a Simple Solution to
man-in-the-middle

● The first time you connect to a remote host,
remember its public key

Stored in ~/.ssh/known_hosts

● The next time you connect, if the remote key is
different, then maybe an attacker is intercepting the
connection!

Or maybe the remote host has just got a new key, e.g. after
a reinstall. But it's up to you to resolve the problem

● Relies on there being no attack in progress the first
time you connect to a machine

● Connect on LAN before travelling with laptop

NSRC@SANOG
9 Colombo

SSH Can Eliminate Passwords
● Use public-key cryptography to prove who
you are

● Generate a public/private key pair locally
ssh-keygen -t rsa
Private key is ~/.ssh/id_rsa
Public key is ~/.ssh/id_rsa.pub

● Install your PUBLIC key on remote hosts
mkdir ~/.ssh
chmod 755 ~/.ssh
Copy public key into ~/.ssh/authorized_keys

● Login!

NSRC@SANOG
9 Colombo

Notes on SSH Authentication

● Private key is protected by a passphrase
So you have to give it each time you log in
Or use "ssh-agent" which holds a copy of your passphrase in

RAM

● No need to change passwords across dozens of
machines

● Disable passwords entirely!
/etc/ssh/sshd_config

● Annoyingly, for historical reasons there are
three different types of SSH key

SSH1 RSA, SSH2 DSA, SSH2 RSA

NSRC@SANOG
9 Colombo

PGP/GPG – Pretty Good Privacy

NSRC@SANOG
9 Colombo

PGP Takes a Different View

● We don't trust anyone except our friends
(especially not big corporate monopolies)

● You sign your friends' keys to vouch for them

● Other people can choose to trust your signature
as much as they trust you

● Generates a distributed "web of trust"

● Sign someone's key when you meet them face to
face - "PGP key signing parties"

NSRC@SANOG
9 Colombo

Summary

NSRC@SANOG
9 Colombo

Designing a Good Cryptosystem is
Very Difficult

● Many possible weaknesses and types of attack,
often not obvious

● DON'T design your own!

● DO use expertly-designed cryptosystems which
have been subject to widespread scrutiny

● Understand how they work and where the potential
weaknesses are

● Remember the other weaknesses in your systems,
especially the human ones

NSRC@SANOG
9 Colombo

Where can you apply these
cryptographic methods?

● At the link layer
PPP encryption

● At the network layer
IPSEC

● At the transport layer
TLS (SSL): many applications support it

● At the application layer
SSH: system administration, file transfers
PGP/GPG: for securing E-mail messages, stand-alone documents,

software packages etc.
Tripwire (and others): system integrity checks

NSRC@SANOG
9 Colombo

Start Using Cryptography Now!
● Use ssh exclusively for system administration.
Disable telnetd everywhere.

● Use scp/sftp exclusively for file transfers. Disable
ftpd everywhere

Allowable exceptions: public FTP servers; customer web server
uploads

● Install pop3/imap/smtp servers with TLS support,
and encourage your clients to use it

● Use HTTPS for any web application where users
enter passwords or confidential data

e.g. webmail, databases

NSRC@SANOG
9 Colombo

Any questions?

	Security & Cryptographic Methods
	Core Security Principals
	outline
	What We'll Cover
	Ciphers
	Interception of Cipher Text
	Examples of Symmetric Ciphers
	Features of Symmetric Ciphers
	Symmetric Cipher Key Distribution
	Hashing One-Way Encryption
	Hashing - one-way encryption: another example
	Examples
	q.) so what use is this?
	Excercise
	Software announcements often contain an MD5 checksum
	Encrypted password storage
	Generating Encryption Keys
	Generating Encryption Keys cont.
	For Symmetric Ciphers
	Example GPG With Symmetric Cipher
	Slide 21
	Reverse the Roles
	Key Lengths
	Protecting the Private Key
	Protecting the Private Key cont.
	Questions?
	Public Key Cryptosystem are Importan
	When Encrypting
	When authenticating
	Digital Signatures have many uses
	Do public keys really solve the key distribution problem?
	The "man-in-the-middle" attack
	TLS/SSL - Digital Certificates
	Digital Certificates can solve the man-in-the-middle problem
	Example: TLS (SSL) web server with digital certificate
	When a client's web browser connects to me with HTTPS:
	The security of TLS depends on:
	Testing TLS (SSL) Applications
	Limitations of s_client
	SSH
	SSH Uses a Simple Solution to man-in-the-middle
	SSH Can Eliminate Passwords
	Notes on SSH Authentication
	PGP/GPG - Pretty Good Privacy
	PGP Takes a Different View
	Summary
	Designing a Good Cryposystem is very Difficult
	Slide 48
	Slide 49
	Slide 50

