Agenda

- Simple Multihoming
- Service Provider Multihoming
- Conclusion
Simple Multihoming

SANOG 24
Why Multihome?

- Redundancy
 - One connection to internet means the network is dependent on:
 - Local router (configuration, software, hardware)
 - WAN media (physical failure, carrier failure)
 - Upstream Service Provider (configuration, software, hardware)
Why Multihome?

- Reliability
 - Business critical applications demand continuous availability
 - Lack of redundancy implies lack of reliability implies loss of revenue
Why Multihome?

- **Supplier Diversity**
 - Many businesses demand supplier diversity as a matter of course
 - Internet connection from two or more suppliers
 - With two or more diverse WAN paths
 - With two or more exit points
 - With two or more international connections
 - Two of everything
Why Multihome?

- Not really a reason, but often quoted...
- Leverage:
 - Playing one ISP off against the other for:
 - Service Quality
 - Service Offerings
 - Availability
Why Multihome?

Summary:
- Multihoming is easy to demand as requirement of any operation
- But what does it really mean:
 - In real life?
 - For the network?
 - For the Internet?
- And how do we do it?
Multihoming Definition

- More than one link external to the local network
 - two or more links to the same ISP
 - two or more links to different ISPs
- Usually **two** external facing routers
 - one router gives link and provider redundancy only
Multihoming

- The scenarios described here apply equally well to end sites being customers of ISPs and ISPs being customers of other ISPs
- Implementation detail may be different
 - end site → ISP ISP controls config
 - ISP1 → ISP2 ISPs share config
Autonomous System Number (ASN)

- Two ranges
 0-65535 (original 16-bit range)
 65536-4294967295 (32-bit range – RFC6793)

- Usage:
 0 and 65535 (reserved)
 1-64495 (public Internet)
 64496-64511 (documentation – RFC5398)
 64512-65534 (private use only)
 23456 (represent 32-bit range in 16-bit world)
 65536-65551 (documentation – RFC5398)
 65552-4199999999 (public Internet)
 4200000000-4294967295 (private use only)

- 32-bit range representation specified in RFC5396
 - Defines “asplain” (traditional format) as standard notation
Autonomous System Number (ASN)

- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN allocations up to 63487 have been made to the RIRs
 - Around 44500 are visible on the Internet
 - Around 1500 left unassigned
- Each RIR has also received a block of 32-bit ASNs
 - Out of 4800 assignments, around 3700 are visible on the Internet
- See www.iana.org/assignments/as-numbers
Applications

- An ISP with customers multihomed on their backbone (RFC2270)
- A corporate network with several regions but connections to the Internet only in the core
- Within a BGP Confederation
Private-AS – Removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 - Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 - They should not be leaked to the public Internet
- Cisco IOS

 `neighbor x.x.x.x.x remove-private-AS`
Transit/Peering/Default

- **Transit**
 - Carrying traffic across a network
 - Usually *for a fee*

- **Peering**
 - Exchanging locally sourced routing information and traffic
 - Usually *for no fee*
 - Sometimes called settlement free peering

- **Default**
 - Where to send traffic when there is no explicit match in the routing table
Configuring Policy

- Assumptions:
 - prefix-lists are used throughout
 - easier/better/faster than access-lists

- Three BASIC Principles
 - prefix-lists to filter prefixes
 - filter-lists to filter ASNs
 - route-maps to apply policy

- Route-maps can be used for filtering, but this is more “advanced” configuration
Policy Tools

- Local preference
 - outbound traffic flows
- Metric (MED)
 - inbound traffic flows (local scope)
- AS-PATH prepend
 - inbound traffic flows (Internet scope)
- Communities
 - specific inter-provider peering
Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes – reachability is not guaranteed
- Current minimum allocation is from /20 to /24 depending on the RIR
 - Several ISPs filter RIR blocks on this boundary
 - Several ISPs filter the rest of address space according to the IANA assignments
 - This activity is called “Net Police” by some
Originating Prefixes

- The RIRs publish their minimum allocation sizes per /8 address block
 - AfriNIC: www.afrinic.net/docs/policies/afpol-v4200407-000.htm
 - APNIC: www.apnic.net/db/min-alloc.html
 - ARIN: www.arin.net/reference/ip_blocks.html
 - LACNIC: lacnic.net/en/registro/index.html
 - RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html
 - Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks

- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 - www.iana.org/assignments/ipv4-address-space

- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs
“Net Police” prefix list issues

- Meant to “punish” ISPs who pollute the routing table with specifics rather than announcing aggregates
- Impacts legitimate multihoming especially at the Internet’s edge
- Impacts regions where domestic backbone is unavailable or costs $$$ compared with international bandwidth
- Hard to maintain – requires updating when RIRs start allocating from new address blocks
- Don’t do it unless consequences understood and you are prepared to keep the list current
 - Consider using the Team Cymru or other reputable bogon BGP feed:
 - www.team-cymru.org/Services/Bogons/routeserver.html
How to Multihome

Some choices...
Transits

- Transit provider is another autonomous system which is used to provide the local network with access to other networks
 - Might be local or regional only
 - But more usually the whole Internet
- Transit providers need to be chosen wisely:
 - Only one
 - no redundancy
 - Too many
 - more difficult to load balance
 - no economy of scale (costs more per Mbps)
 - hard to provide service quality
- Recommendation: at least two, no more than three
Common Mistakes

- ISPs sign up with too many transit providers
 - Lots of small circuits (cost more per Mbps than larger ones)
 - Transit rates per Mbps reduce with increasing transit bandwidth purchased
 - Hard to implement reliable traffic engineering that doesn’t need daily fine tuning depending on customer activities

- No diversity
 - Chosen transit providers all reached over same satellite or same submarine cable
 - Chosen transit providers have poor onward transit and peering
Peers

- A peer is another autonomous system with which the local network has agreed to exchange locally sourced routes and traffic

- Private peer
 - Private link between two providers for the purpose of interconnecting

- Public peer
 - Internet Exchange Point, where providers meet and freely decide who they will interconnect with

- **Recommendation**: peer as much as possible!
Common Mistakes

- Mistaking a transit provider’s “Exchange” business for a no-cost public peering point
- Not working hard to get as much peering as possible
 - Physically near a peering point (IXP) but not present at it
 - (Transit sometimes is cheaper than peering!!)
- Ignoring/avoiding competitors because they are competition
 - Even though potentially valuable peering partner to give customers a better experience
Multihoming Scenarios

- Stub network
- Multi-homed stub network
- Multi-homed network
- Multiple Sessions to another AS
Stub Network

- No need for BGP
- Point static default to upstream ISP
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-homed Stub Network

- Use BGP (not IGP or static) to loadshare
- Use private AS (ASN > 64511)
- Upstream ISP advertises stub network
- Policy confined within upstream ISP’s policy
Multi-homed Network

- Many situations possible
 - multiple sessions to same ISP
 - secondary for backup only
 - load-share between primary and secondary
 - selectively use different ISPs
Multiple Sessions to an ISP

- Several options
 - ebgp multihop
 - bgp multipath
 - cef loadsharing
 - bgp attribute manipulation
Multiple Sessions to an AS – ebgp multihop

- Use ebgp-multihop
 - Run eBGP between loopback addresses
 - eBGP prefixes learned with loopback address as next hop

- Cisco IOS
 - router bgp 100
 - neighbor 1.1.1.1 remote-as 200
 - neighbor 1.1.1.1 ebgp-multihop 2
 - !
 - ip route 1.1.1.1 255.255.255.255 serial 1/0
 - ip route 1.1.1.1 255.255.255.255 serial 1/1
 - ip route 1.1.1.1 255.255.255.255 serial 1/2

- Common error made is to point remote loopback route at IP address rather than specific link
Multiple Sessions to an AS – ebgp multihop

- One serious eBGP-multihop caveat:
 - R1 and R3 are eBGP peers that are loopback peering
 - Configured with:
 neighbor x.x.x.x ebgp-multihop 2
 - If the R1 to R3 link goes down the session could establish via R2
- Usually happens when routing to remote loopback is dynamic, rather than static pointing at a link
Multiple Sessions to an ISP – ebgp multihop

- Try and avoid use of ebgp-multihop unless:
 - It’s absolutely necessary –or–
 - Loadsharring across multiple links
- Many ISPs discourage its use, for example:

We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:
- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker
Multiple Sessions to an AS – bgp multi path

- Three BGP sessions required
- Platform limit on number of paths (could be as little as 6)
- Full BGP feed makes this unwieldy
 - 3 copies of Internet Routing Table goes into the FIB

```
routerr bgp 100
    neighbor 1.1.2.1 remote-as 200
    neighbor 1.1.2.5 remote-as 200
    neighbor 1.1.2.9 remote-as 200
    maximum-paths 3
```
Multiple Sessions to an AS – bgp attributes & filters

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one ISP
 - Learn selected prefixes from second ISP
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution
Basic Principles of Multihoming

Let’s learn to walk before we try running…
The Basic Principles

- Announcing address space attracts traffic
 - (Unless policy in upstream providers interferes)
- Announcing the ISP aggregate out a link will result in traffic for that aggregate coming in that link
- Announcing a subprefix of an aggregate out a link means that all traffic for that subprefix will come in that link, even if the aggregate is announced somewhere else
 - The most specific announcement wins!
The Basic Principles

- To split traffic between two links:
 - Announce the aggregate on both links - ensures redundancy
 - Announce one half of the address space on each link
 - (This is the first step, all things being equal)

- Results in:
 - Traffic for first half of address space comes in first link
 - Traffic for second half of address space comes in second link
 - If either link fails, the fact that the aggregate is announced ensures there is a backup path
The Basic Principles

- The keys to successful multihoming configuration:
 - Keeping traffic engineering prefix announcements independent of customer iBGP
 - Understanding how to announce aggregates
 - Understanding the purpose of announcing subprefixes of aggregates
 - Understanding how to manipulate BGP attributes
 - Too many upstreams/external paths makes multihoming harder (2 or 3 is enough!)
IP Addressing & Multihoming

How Good IP Address Plans assist with Multihoming
IP Addressing & Multihoming

- IP Address planning is an important part of Multihoming
- Previously have discussed separating:
 - Customer address space
 - Customer p-t-p link address space
 - Infrastructure p-t-p link address space
 - Loopback address space

```
101.10.0.0/21

101.10.0.1
101.10.5.255
101.10.6.255 /24
```

Customer Address & p-t-p links Infrastructure Loopbacks
IP Addressing & Multihoming

- ISP Router loopbacks and backbone point to point links make up a small part of total address space
 - And they don’t attract traffic, unlike customer address space
- Links from ISP Aggregation edge to customer router needs one /30
 - Small requirements compared with total address space
 - Some ISPs use IP unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works
Unplanned IP addressing

- ISP fills up customer IP addressing from one end of the range:

```
  101.10.0.0/21

1 2 3 4 5
```

- Customers generate traffic
 - Dividing the range into two pieces will result in one /22 with all the customers, and one /22 with just the ISP infrastructure the addresses
 - No loadbalancing as all traffic will come in the first /22
 - Means further subdivision of the first /22 = harder work
Planned IP addressing

- If ISP fills up customer addressing from both ends of the range:

 101.10.0.0/21

 ![Diagram of IP addressing range]

- Scheme then is:

 - First customer from first /22, second customer from second /22, third from first /22, etc

- This works also for residential versus commercial customers:

 - Residential from first /22
 - Commercial from second /22
Planned IP Addressing

- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Don’t forget to always announce an aggregate out of each link
Basic Multihoming

Let’s try some simple worked examples...
Basic Multihoming

- No frills multihoming
- Will look at two cases:
 - Multihoming with the same ISP
 - Multihoming to different ISPs
- Will keep the examples easy
 - Understanding easy concepts will make the more complex scenarios easier to comprehend
 - All assume that the site multihoming has a /19 address block
Basic Multihoming

- This type is most commonplace at the edge of the Internet
 - Networks here are usually concerned with inbound traffic flows
 - Outbound traffic flows being “nearest exit” is usually sufficient
- Can apply to the leaf ISP as well as Enterprise networks
Two links to the same ISP

One link primary, the other link backup only
Two links to the same ISP (one as backup only)

- Applies when end-site has bought a large primary WAN link to their upstream a small secondary WAN link as the backup
 - For example, primary path might be an E1, backup might be 64kbps
Two links to the same ISP (one as backup only)

- AS100 removes private AS and any customer subprefixes from Internet announcement
Two links to the same ISP (one as backup only)

- Announce /19 aggregate on each link
 - primary link:
 - Outbound – announce /19 unaltered
 - Inbound – receive default route
 - backup link:
 - Outbound – announce /19 with increased metric
 - Inbound – received default, and reduce local preference
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to the same ISP (one as backup only)

- Router A Configuration

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.2 remote-as 100
  neighbor 122.102.10.2 description RouterC
  neighbor 122.102.10.2 prefix-list aggregate out
  neighbor 122.102.10.2 prefix-list default in

  ip prefix-list aggregate permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0

  ip route 121.10.0.0 255.255.224.0 null0
  ```
Two links to the same ISP (one as backup only)

- Router B Configuration

  ```
  router bgp 65534
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.6 remote-as 100
  neighbor 122.102.10.6 description RouterD
  neighbor 122.102.10.6 prefix-list aggregate out
  neighbor 122.102.10.6 route-map routerD-out out
  neighbor 122.102.10.6 prefix-list default in
  neighbor 122.102.10.6 route-map routerD-in in
  ```

..next slide
Two links to the same ISP
(one as backup only)

```
ip prefix-list aggregate permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.224.0 null0
!
route-map routerD-out permit 10
  set metric 10
!
route-map routerD-in permit 10
  set local-preference 90
!```
Two links to the same ISP (one as backup only)

- **Router C Configuration (main link)**
  
  ```
 router bgp 100
 neighbor 122.102.10.1 remote-as 65534
 neighbor 122.102.10.1 default-originate
 neighbor 122.102.10.1 prefix-list Customer in
 neighbor 122.102.10.1 prefix-list default out

 ip prefix-list Customer permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- **Router D Configuration (backup link)**
  
  ```
 router bgp 100
 neighbor 122.102.10.5 remote-as 65534
 neighbor 122.102.10.5 default-originate
 neighbor 122.102.10.5 prefix-list Customer in
 neighbor 122.102.10.5 prefix-list default out
 !
 ip prefix-list Customer permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
  ```
Two links to the same ISP (one as backup only)

- Router E Configuration
  ```
 router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 remove-private-AS
 neighbor 122.102.10.17 prefix-list Customer out

 ip prefix-list Customer permit 121.10.0.0/19
  ```

- Router E removes the private AS and customer’s subprefixes from external announcements

- Private AS still visible inside AS100
Two links to the same ISP

With Loadsharing
Loadsharing to the same ISP

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
  - Unequal capacity circuits requires more refinement – see later
Loadsharing to the same ISP

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Loadsharing to the same ISP (with redundancy)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
  - basic inbound loadsharing
  - assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until “perfect” loadsharing achieved
- Accept the default from upstream
  - basic outbound loadsharing by nearest exit
  - okay in first approx as most ISP and end-site traffic is inbound
Loadsharing to the same ISP (with redundancy)

- **Router A Configuration**
  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.0.0 mask 255.255.240.0
 neighbor 122.102.10.2 remote-as 100
 neighbor 122.102.10.2 prefix-list routerC out
 neighbor 122.102.10.2 prefix-list default in

 IP prefix-list default permit 0.0.0.0/0
 ip prefix-list routerC permit 121.10.0.0/20
 ip prefix-list routerC permit 121.10.0.0/19

 ip route 121.10.0.0 255.255.240.0 null0
 ip route 121.10.0.0 255.255.224.0 null0
  ```
Loadsharing to the same ISP (with redundancy)

- **Router B Configuration**
  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 122.102.10.6 remote-as 100
 neighbor 122.102.10.6 prefix-list routerD out
 neighbor 122.102.10.6 prefix-list default in

 !
 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerD permit 121.10.16.0/20
 ip prefix-list routerD permit 121.10.0.0/19
 !
 ip route 121.10.16.0 255.255.240.0 null0
 ip route 121.10.0.0 255.255.224.0 null0
  ```
Loadsharing to the same ISP (with redundancy)

- **Router C Configuration**
  ```bash
 router bgp 100
 neighbor 122.102.10.1 remote-as 65534
 neighbor 122.102.10.1 default-originate
 neighbor 122.102.10.1 prefix-list Customer in
 neighbor 122.102.10.1 prefix-list default out

 ip prefix-list Customer permit 121.10.0.0/19 le 20
 ip prefix-list default permit 0.0.0.0/0
  ```

- **Router C only allows in /19 and /20 prefixes from customer block**
- **Router D configuration is identical**
Loadsharing to the same ISP (with redundancy)

- Router E Configuration

  router bgp 100
  neighbor 122.102.10.17 remote-as 110
  neighbor 122.102.10.17 remove-private-AS
  neighbor 122.102.10.17 prefix-list Customer out

- Private AS still visible inside AS100

  ip prefix-list Customer permit 121.10.0.0/19
Loadsharing to the same ISP (with redundancy)

- Default route for outbound traffic?
  - Use default-information originate for the IGP and rely on IGP metrics for nearest exit
  - e.g. on router A:

    ```
 router ospf 65534
 default-information originate metric 2 metric-type 1

 Or

 router isis as65534
 default-information originate
    ```
Loadsharing to the same ISP (with redundancy)

- Loadsharing configuration is only on customer router
- Upstream ISP has to
  - remove customer subprefixes from external announcements
  - remove private AS from external announcements
- Could also use BGP communities
Two links to the same ISP

Multiple Dualhommed Customers
(RFC2270)
Multiple Dualhomed Customers  
(RFC2270)

- Unusual for an ISP just to have one dualhomed customer
  - Valid/valuable service offering for an ISP with multiple PoPs
  - Better for ISP than having customer multihome with another provider!

- Look at scaling the configuration
  - ⇒ Simplifying the configuration
  - Using templates, peer-groups, etc
  - Every customer has the same configuration (basically)
Multiple Dualhommed Customers (RFC2270)

- Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement
Multiple Dualhommed Customers (RFC2270)

- Customer announcements as per previous example
- Use the same private AS for each customer
  - documented in RFC2270
  - address space is not overlapping
  - each customer hears default only
- Router An and Bn configuration same as Router A and B previously
Multiple Dualhomoved Customers (RFC2270)

- Router A1 Configuration

  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.0.0 mask 255.255.240.0
 neighbor 122.102.10.2 remote-as 100
 neighbor 122.102.10.2 prefix-list routerC out
 neighbor 122.102.10.2 prefix-list default in

 !
 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerC permit 121.10.0.0/20
 ip prefix-list routerC permit 121.10.0.0/19

 !
 ip route 121.10.0.0 255.255.240.0 null0
 ip route 121.10.0.0 255.255.224.0 null0
  ```
Multiple Dualhomed Customers (RFC2270)

- Router B1 Configuration
  ```
 router bgp 65534
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 122.102.10.6 remote-as 100
 neighbor 122.102.10.6 prefix-list routerD out
 neighbor 122.102.10.6 prefix-list default in

 ip prefix-list default permit 0.0.0.0/0
 ip prefix-list routerD permit 121.10.16.0/20
 ip prefix-list routerD permit 121.10.0.0/19

 ip route 121.10.0.0 255.255.224.0 null0
 ip route 121.10.16.0 255.255.240.0 null0
  ```
Multiple Dualhomed Customers (RFC2270)

- Router C Configuration

  router bgp 100
  neighbor bgp-customers peer-group
  neighbor bgp-customers remote-as 65534
  neighbor bgp-customers default-originate
  neighbor bgp-customers prefix-list default out
  neighbor 122.102.10.1 peer-group bgp-customers
  neighbor 122.102.10.1 description Customer One
  neighbor 122.102.10.1 prefix-list Customer1 in
  neighbor 122.102.10.9 peer-group bgp-customers
  neighbor 122.102.10.9 description Customer Two
  neighbor 122.102.10.9 prefix-list Customer2 in
Multiple Dualhomed Customers (RFC2270)

```
neighbor 122.102.10.17 peer-group bgp-customers
neighbor 122.102.10.17 description Customer Three
neighbor 122.102.10.17 prefix-list Customer3 in

! ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

- Router C only allows in /19 and /20 prefixes from customer block
Multiple Dualhomed Customers (RFC2270)

- **Router D Configuration**

```plaintext
router bgp 100
 neighbor bgp-customers peer-group
 neighbor bgp-customers remote-as 65534
 neighbor bgp-customers default-originate
 neighbor bgp-customers prefix-list default out
 neighbor 122.102.10.5 peer-group bgp-customers
 neighbor 122.102.10.5 description Customer One
 neighbor 122.102.10.5 prefix-list Customer1 in
 neighbor 122.102.10.13 peer-group bgp-customers
 neighbor 122.102.10.13 description Customer Two
 neighbor 122.102.10.13 prefix-list Customer2 in
```
Multiple Dualhomed Customers (RFC2270)

neighbor 122.102.10.21 peer-group bgp-customers
neighbor 122.102.10.21 description Customer Three
neighbor 122.102.10.21 prefix-list Customer3 in

! ip prefix-list Customer1 permit 121.10.0.0/19 le 20
ip prefix-list Customer2 permit 121.16.64.0/19 le 20
ip prefix-list Customer3 permit 121.14.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0

- Router D only allows in /19 and /20 prefixes from customer block
Multiple Dualhommed Customers (RFC2270)

- Router E Configuration
  - assumes customer address space is not part of upstream’s address block
    router bgp 100
    neighbor 122.102.10.17 remote-as 110
    neighbor 122.102.10.17 remove-private-AS
    neighbor 122.102.10.17 prefix-list Customers out
    
    ip prefix-list Customers permit 121.10.0.0/19
    ip prefix-list Customers permit 121.16.64.0/19
    ip prefix-list Customers permit 121.14.192.0/19

- Private AS still visible inside AS100
Multiple Dualhomed Customers (RFC2270)

- If customers’ prefixes come from ISP’s address block
  - do **NOT** announce them to the Internet
  - announce ISP aggregate only

- Router E configuration:

```plaintext
router bgp 100
 neighbor 122.102.10.17 remote-as 110
 neighbor 122.102.10.17 prefix-list my-aggregate out

! ip prefix-list my-aggregate permit 121.8.0.0/13
```
Multihoming Summary

- Use private AS for multihoming to the same upstream
- Leak subprefixes to upstream only to aid loadsharing
- Upstream router E configuration is identical across all situations
Basic Multihoming

Multihoming to Different ISPs
Two links to different ISPs

- Use a Public AS
  - Or use private AS if agreed with the other ISP
  - But some people don’t like the “inconsistent-AS” which results from use of a private-AS

- Address space comes from
  - both upstreams or
  - Regional Internet Registry

- Configuration concepts very similar
Inconsistent-AS?

- Viewing the prefixes originated by AS65534 in the Internet shows they appear to be originated by both AS210 and AS200
  - This is NOT bad
  - Nor is it illegal
- IOS command is
  ```
 show ip bgp inconsistent-as
  ```
Two links to different ISPs

One link primary, the other link backup only
Two links to different ISPs (one as backup only)

Announce /19 block

Announce /19 block with longer AS PATH

AS 100

AS 120

AS 130
Two links to different ISPs
(one as backup only)

- Announce /19 aggregate on each link
  - primary link makes standard announcement
  - backup link lengthens the AS PATH by using AS PATH prepend

- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity
Two links to different ISPs (one as backup only)

- **Router A Configuration**
  
  ```
 router bgp 130

 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list aggregate out
 neighbor 122.102.10.1 prefix-list default in

 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.224.0 null0
  ```
Two links to different ISPs (one as backup only)

- **Router B Configuration**

  ```
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list aggregate out
 neighbor 120.1.5.1 route-map routerD-out out
 neighbor 120.1.5.1 prefix-list default in
 neighbor 120.1.5.1 route-map routerD-in in

 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 route-map routerD-out permit 10
 set as-path prepend 130 130 130

 route-map routerD-in permit 10
 set local-preference 80
  ```
Two links to different ISPs (one as backup only)

- Not a common situation as most sites tend to prefer using whatever capacity they have
  - (Useful when two competing ISPs agree to provide mutual backup to each other)
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction
Two links to different ISPs

With Loadsharing
Two links to different ISPs (with loadsharing)

Announce first /20 and /19 block

Announce second /20 and /19 block
Two links to different ISPs (with loadsharing)

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
  - basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity
Two links to different ISPs (with loadsharing)

- **Router A Configuration**

  ```
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.0.0 mask 255.255.240.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list firstblock out
 neighbor 122.102.10.1 prefix-list default in

 ip prefix-list default permit 0.0.0.0/0

 ip prefix-list firstblock permit 121.10.0.0/20
 ip prefix-list firstblock permit 121.10.0.0/19
  ```
Two links to different ISPs (with loadsharing)

- Router B Configuration

```conf
routerr bgp 130
 network 121.10.0.0 mask 255.255.224.0
 network 121.10.16.0 mask 255.255.240.0
 neighbor 120.1.5.1 remote-as 120
 neighbor 120.1.5.1 prefix-list secondblock out
 neighbor 120.1.5.1 prefix-list default in

 !
 ip prefix-list default permit 0.0.0.0/0

 !
 ip prefix-list secondblock permit 121.10.16.0/20
 ip prefix-list secondblock permit 121.10.0.0/19
```

95
Two links to different ISPs (with loadsharing)

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution
  - Start with a simple concept
  - And build on it...!
Two links to different ISPs

More Controlled Loadsharing
Loadsharing with different ISPs

AS 100

Announce /19 block

Internet

AS 120

Announce /20 subprefix, and /19 block with longer AS path

AS 130
Loadsharing with different ISPs

- Announce /19 aggregate on each link
  - On first link, announce /19 as normal
  - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
    - controls loadsharing between upstreams and the Internet

- Vary the subprefix size and AS PATH length until “perfect” loadsharing achieved

- Still require redundancy!
Loadsharing with different ISPs

- Router A Configuration
  
  ```
 router bgp 130
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 100
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list aggregate out

 ip prefix-list aggregate permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.224.0 null0
  ```
Loadsharing with different ISPs

- Router B Configuration

  router bgp 130
  network 121.10.0.0 mask 255.255.224.0
  network 121.10.16.0 mask 255.255.240.0
  neighbor 120.1.5.1 remote-as 120
  neighbor 120.1.5.1 prefix-list default in
  neighbor 120.1.5.1 prefix-list subblocks out
  neighbor 120.1.5.1 route-map routerD out

  route-map routerD permit 10
  match ip address prefix-list aggregate
  set as-path prepend 130 130
  route-map routerD permit 20

  ip prefix-list subblocks permit 121.10.0.0/19 le 20
  ip prefix-list aggregate permit 121.10.0.0/19
Loadsharing with different ISPs

- This example is more commonplace
- Shows how ISPs and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced
Summary
Summary

- Previous examples dealt with simple case
- Load balancing inbound traffic flow
  - Achieved by modifying outbound routing announcements
  - Aggregate is always announced
- We have not looked at outbound traffic flow
  - For now this is left as “nearest exit”
Simple Multihoming

ISP Workshops
Service Provider
Multihoming

ISP Workshops
Service Provider Multihoming

- Previous examples dealt with loadsharing inbound traffic
  - Of primary concern at Internet edge
  - What about outbound traffic?
- Transit ISPs strive to balance traffic flows in both directions
  - Balance link utilisation
  - Try and keep most traffic flows symmetric
  - Some edge ISPs try and do this too
- The original “Traffic Engineering”
Service Provider Multihoming

- Balancing outbound traffic requires inbound routing information
  - Common solution is “full routing table”
  - Rarely necessary
    - Why use the “routing mallet” to try solve loadsharing problems?
  - “Keep It Simple” is often easier (and $$$ cheaper) than carrying N-copies of the full routing table
Common MYTHS

1. You need the full routing table to multihome
   - People who sell router memory would like you to believe this
   - Only true if you are a transit provider
   - Full routing table can be a significant hindrance to multihoming

2. You need a BIG router to multihome
   - Router size is related to data rates, not running BGP
   - In reality, to multihome, your router needs to:
     - Have two interfaces,
     - Be able to talk BGP to at least two peers,
     - Be able to handle BGP attributes,
     - Handle at least one prefix

3. BGP is complex
   - In the wrong hands, yes it can be! Keep it Simple!
Service Provider Multihoming: Some Strategies

- Take the prefixes you need to aid traffic engineering
  - Look at NetFlow data for popular sites
- Prefixes originated by your immediate neighbours and their neighbours will do more to aid load balancing than prefixes from ASNs many hops away
  - Concentrate on local destinations
- Use default routing as much as possible
  - Or use the full routing table with care
Service Provider Multihoming

- Examples
  - One upstream, one local peer
  - One upstream, local exchange point
  - Two upstreams, one local peer
  - Three upstreams, unequal link bandwidths

- Require BGP and a public ASN
- Examples assume that the local network has their own /19 address block
Service Provider
Multihoming

One upstream, one local peer
One Upstream, One Local Peer

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the “Internet”
- Connect to the local competition so that local traffic stays local
  - Saves spending valuable $ on upstream transit costs for local traffic
One Upstream, One Local Peer

AS 110

Upstream ISP
AS130

Local Peer
AS120

AS 110
One Upstream, One Local Peer

- Announce /19 aggregate on each link
- Accept default route only from upstream
  - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes the local peer originates
One Upstream, One Local Peer

- **Router A Configuration**
  
  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.2 remote-as 120
 neighbor 122.102.10.2 prefix-list my-block out
 neighbor 122.102.10.2 prefix-list AS120-peer in

 ip prefix-list AS120-peer permit 122.5.16.0/19
 ip prefix-list AS120-peer permit 121.240.0.0/20
 ip prefix-list my-block permit 121.10.0.0/19

 ip route 121.10.0.0 255.255.224.0 null0 250
  ```
One Upstream, One Local Peer

- **Router A – Alternative Configuration**
  
  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.2 remote-as 120
 neighbor 122.102.10.2 prefix-list my-block out
 neighbor 122.102.10.2 filter-list 10 in

 ip as-path access-list 10 permit ^120_+$

 ip prefix-list my-block permit 121.10.0.0/19

 ip route 121.10.0.0 255.255.224.0 null0
  ```

AS Path filters – more “trusting”
One Upstream, One Local Peer

- **Router C Configuration**

  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list my-block out

 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.224.0 null0
  ```
One Upstream, One Local Peer

- Two configurations possible for Router A
  - Filter-lists assume peer knows what they are doing
  - Prefix-list higher maintenance, but safer
  - Some ISPs use both

- Local traffic goes to and from local peer, everything else goes to upstream
Aside:
Configuration Recommendations

- Private Peers
  - The peering ISPs exchange prefixes they originate
  - Sometimes they exchange prefixes from neighbouring ASNs too
- Be aware that the private peer eBGP router should carry only the prefixes you want the private peer to receive
  - Otherwise they could point a default route to you and unintentionally transit your backbone
Service Provider
Multihoming

One upstream, Local Exchange Point
One Upstream, Local Exchange Point

- Very common situation in many regions of the Internet
- Connect to upstream transit provider to see the “Internet”
  - Connect to the local Internet Exchange Point so that local traffic stays local
    - Saves spending valuable $ on upstream transit costs for local traffic
- This example is a scaled up version of the previous one
One Upstream, Local Exchange Point
One Upstream, Local Exchange Point

- Announce /19 aggregate to every neighbouring AS
- Accept default route only from upstream
  - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by IXP peers
One Upstream, Local Exchange Point

- Router A Configuration
  ```
 interface fastethernet 0/0
 description Exchange Point LAN
 ip address 120.5.10.1 mask 255.255.255.224

 router bgp 110
 neighbor ixp-peers peer-group
 neighbor ixp-peers prefix-list my-block out
 neighbor ixp-peers remove-private-AS
 neighbor ixp-peers send-community
 neighbor ixp-peers route-map set-local-pref in

 ...next slide
  ```
One Upstream, Local Exchange Point

neighbor 120.5.10.2  remote-as 100
neighbor 120.5.10.2  peer-group ixp-peers
neighbor 120.5.10.2  prefix-list peer100 in
neighbor 120.5.10.3  remote-as 101
neighbor 120.5.10.3  peer-group ixp-peers
neighbor 120.5.10.3  prefix-list peer101 in
neighbor 120.5.10.4  remote-as 102
neighbor 120.5.10.4  peer-group ixp-peers
neighbor 120.5.10.4  prefix-list peer102 in
neighbor 120.5.10.5  remote-as 103
neighbor 120.5.10.5  peer-group ixp-peers
neighbor 120.5.10.5  prefix-list peer103 in

...next slide
One Upstream, Local Exchange Point

!  
ip prefix-list my-block permit 121.10.0.0/19  
ip prefix-list peer100 permit 122.0.0.0/19  
ip prefix-list peer101 permit 122.30.0.0/19  
ip prefix-list peer102 permit 122.12.0.0/19  
ip prefix-list peer103 permit 122.18.128.0/19  
  
route-map set-local-pref permit 10  
  set local-preference 150  
!
One Upstream, Local Exchange

- Note that Router A does not generate the aggregate for AS110
  - If Router A becomes disconnected from backbone, then the aggregate is no longer announced to the IX
  - BGP failover works as expected

- Note the inbound route-map which sets the local preference higher than the default
  - This is a visual reminder that BGP Best Path for local traffic will be across the IXP
One Upstream, Local Exchange Point

- **Router C Configuration**
  
  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.255.224
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list my-block out

 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0

 ip route 121.10.0.0 255.255.255.224.0 null0
  ```
One Upstream, Local Exchange Point

- Note Router A configuration
  - Prefix-list higher maintenance, but safer
  - No generation of AS110 aggregate
- IXP traffic goes to and from local IXP, everything else goes to upstream
Aside:
IXP Configuration Recommendations

- IXP peers
  - The peering ISPs at the IXP exchange prefixes they originate
  - Sometimes they exchange prefixes from neighbouring ASNs too

- Be aware that the IXP border router should carry only the prefixes you want the IXP peers to receive and the destinations you want them to be able to reach
  - Otherwise they could point a default route to you and unintentionally transit your backbone

- If IXP router is at IX, and distant from your backbone
  - Don’t originate your address block at your IXP router
Service Provider
Multihoming

Two upstreams, one local peer
Two Upstreams, One Local Peer

- Connect to both upstream transit providers to see the “Internet”
  - Provides external redundancy and diversity – the reason to multihome

- Connect to the local peer so that local traffic stays local
  - Saves spending valuable $ on upstream transit costs for local traffic
Two Upstreams, One Local Peer

Upstream ISP
AS 110

Upstream ISP
AS 130

Upstream ISP
AS 140

Local Peer
AS 120
Two Upstreams, One Local Peer

- Announce /19 aggregate on each link
- Accept default route only from upstreams
  - Either 0.0.0.0/0 or a network which can be used as default
- Accept all routes originated by local peer
- Note separation of Router C and D
  - Single edge router means no redundancy
- Router A
  - Same routing configuration as in example with one upstream and one local peer
Two Upstreams, One Local Peer

- Router C Configuration

  router bgp 110
  network 121.10.0.0 mask 255.255.224.0
  neighbor 122.102.10.1 remote-as 130
  neighbor 122.102.10.1 prefix-list default in
  neighbor 122.102.10.1 prefix-list my-block out
  !
  ip prefix-list my-block permit 121.10.0.0/19
  ip prefix-list default permit 0.0.0.0/0
  !
  ip route 121.10.0.0 255.255.224.0 null0
Two Upstreams, One Local Peer

- **Router D Configuration**

  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.5 remote-as 140
 neighbor 122.102.10.5 prefix-list default in
 neighbor 122.102.10.5 prefix-list my-block out
 !
 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
 !
 ip route 121.10.0.0 255.255.224.0 null0
  ```
Two Upstreams, One Local Peer

- This is the simple configuration for Router C and D
- Traffic out to the two upstreams will take nearest exit
  - Inexpensive routers required
  - This is not useful in practice especially for international links
  - Loadsharing needs to be better
Two Upstreams, One Local Peer

- Better configuration options:
  - Accept full routing from both upstreams
    - Expensive & unnecessary!
  - Accept default from one upstream and some routes from the other upstream
    - The way to go!
Two Upstreams, One Local Peer
Full Routes

Router C Configuration

```
router bgp 110
 network 121.10.0.0 mask 255.255.255.224
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list rfc1918-deny in
 neighbor 122.102.10.1 prefix-list my-block out
 neighbor 122.102.10.1 route-map AS130-loadshare in

 !
 ip prefix-list my-block permit 121.10.0.0/19
 ! See www.cymru.com/Documents/bogon-list.html

 ! ...for “RFC1918 and friends” list
```

Allow all prefixes in apart from RFC1918 and friends
Two Upstreams, One Local Peer
Full Routes

ip route 121.10.0.0 255.255.224.0 null0
!
ip as-path access-list 10 permit ^(130_)+$
ip as-path access-list 10 permit ^(130_)+_[0-9]+$
!
route-map AS130-loadshare permit 10
  match ip as-path 10
  set local-preference 120
!
route-map AS130-loadshare permit 20
  set local-preference 80
!
Two Upstreams, One Local Peer
Full Routes

- Router D Configuration
  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.5 remote-as 140
 neighbor 122.102.10.5 prefix-list rfc1918-deny in
 neighbor 122.102.10.5 prefix-list my-block out

 ip prefix-list my-block permit 121.10.0.0/19
 See www.cymru.com/Documents/bogon-list.html
 ...for “RFC1918 and friends” list
  ```
Two Upstreams, One Local Peer
Full Routes

- **Router C configuration:**
  - Accept full routes from AS130
  - Tag prefixes originated by AS130 and AS130’s neighbouring ASes with local preference 120
    - Traffic to those ASes will go over AS130 link
  - Remaining prefixes tagged with local preference of 80
    - Traffic to other all other ASes will go over the link to AS140

- **Router D configuration** same as Router C without the route-map
Two Upstreams, One Local Peer
Full Routes

- Full routes from upstreams
  - Expensive – needs lots of memory and CPU
  - Need to play preference games
  - Previous example is only an example – real life will need improved fine-tuning!
  - Previous example doesn’t consider inbound traffic – see earlier in presentation for examples
Two Upstreams, One Local Peer
Partial Routes: Strategy

- Ask one upstream for a default route
  - Easy to originate default towards a BGP neighbour

- Ask other upstream for a full routing table
  - Then filter this routing table based on neighbouring ASN
  - E.g. want traffic to their neighbours to go over the link to that ASN
  - Most of what upstream sends is thrown away
  - Easier than asking the upstream to set up custom BGP filters for you
Two Upstreams, One Local Peer
Partial Routes

Router C Configuration

```plaintext
router bgp 110
 network 121.10.0.0 mask 255.255.255.224
 neighbor 122.102.10.1 remote-as 130
 neighbor 122.102.10.1 prefix-list rfc1918-nodef-deny in
 neighbor 122.102.10.1 prefix-list my-block out
 neighbor 122.102.10.1 filter-list 10 in
 neighbor 122.102.10.1 route-map tag-default-low in

...next slide
```

Allow all prefixes and default in; deny RFC1918 and friends

AS filter list filters prefixes based on origin ASN
Two Upstreams, One Local Peer Partial Routes

```plaintext
ip prefix-list my-block permit 121.10.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 121.10.0.0 255.255.255.224.0 null0
!
ip as-path access-list 10 permit ^130_+\$
ip as-path access-list 10 permit ^130_+[0-9]+\$
!
route-map tag-default-low permit 10
 match ip address prefix-list default
 set local-preference 80
!
route-map tag-default-low permit 20
!
```

147
Two Upstreams, One Local Peer
Partial Routes

- Router D Configuration
  
  ```
 router bgp 110
 network 121.10.0.0 mask 255.255.224.0
 neighbor 122.102.1.0 remote-as 140
 neighbor 122.102.10.5 prefix-list default in
 neighbor 122.102.10.5 prefix-list my-block out
 !
 ip prefix-list my-block permit 121.10.0.0/19
 ip prefix-list default permit 0.0.0.0/0
 !
 ip route 121.10.0.0 255.255.224.0 null0
  ```
Two Upstreams, One Local Peer Partial Routes

- **Router C configuration:**
  - Accept full routes from AS130
    - (or get them to send less)
  - Filter ASNs so only AS130 and AS130’s neighbouring ASes are accepted
  - Allow default, and set it to local preference 80
  - Traffic to those ASes will go over AS130 link
  - Traffic to other all other ASes will go over the link to AS140
  - If AS140 link fails, backup via AS130 – and vice-versa
Two Upstreams, One Local Peer Partial Routes

- **Router C IGP Configuration**
  ```
 router ospf 110
 default-information originate metric 30
 passive-interface Serial 0/0
 !
 ip route 0.0.0.0 0.0.0.0 serial 0/0 254
  ```

- **Router D IGP Configuration**
  ```
 router ospf 110
 default-information originate metric 10
 passive-interface Serial 0/0
 !
 ip route 0.0.0.0 0.0.0.0 serial 0/0 254
  ```
Two Upstreams, One Local Peer

Partial Routes

- Partial routes from upstreams
  - Use OSPF to determine outbound path
  - Router D default has metric 10 – primary outbound path
  - Router C default has metric 30 – backup outbound path
  - Serial interface goes down, static default is removed from routing table, OSPF default withdrawn
Two Upstreams, One Local Peer
Partial Routes

- Partial routes from upstreams
  - Not expensive – only carry the routes necessary for loadsharing
  - Need to filter on AS paths
  - Previous example is only an example – real life will need improved fine-tuning!
  - Previous example doesn’t consider inbound traffic – see earlier in presentation for examples
Aside: Configuration Recommendation

- When distributing internal default by iBGP or OSPF/ISIS
  - Make sure that routers connecting to private peers or to IXPs do **NOT** carry the default route
  - Otherwise they could point a default route to you and unintentionally transit your backbone
- Simple fix for Private Peer/IXP routers:
  
  ```
 ip route 0.0.0.0 0.0.0.0 null0
  ```
Service Provider Multihoming

Three upstreams, unequal bandwidths
Three upstreams, unequal bandwidths

- Autonomous System has three upstreams
  - 16Mbps to ISP A
  - 8Mbps to ISP B
  - 4Mbps to ISP C

- What is the strategy here?
  - One option is full table from each
    - 3x 450k prefixes $\Rightarrow$ 1350k paths
  - Other option is partial table and defaults from each
    - How??
Strategy

- Two external routers (gives router redundancy)
  - Do NOT need three routers for this
- Connect biggest bandwidth to one router
  - Most of inbound and outbound traffic will go here
- Connect the other two links to the second router
  - Provides maximum backup capacity if primary link fails
- Use the biggest link as default
  - Most of the inbound and outbound traffic will go here
- Do the traffic engineering on the two smaller links
  - Focus on regional traffic needs
Router A has 16Mbps circuit to ISP A
Router B has 8Mbps and 4Mbps circuits to ISPs B&C
Outbound load-balancing strategy

- Available BGP feeds from Transit providers:
  - Full table
  - Customer prefixes and default
  - Default Route

- These are the common options on Internet today
  - Very rare for any provider to offer anything different
  - Very rare for any provider to customise BGP feed for a customer
Outbound load-balancing strategy

- Accept only a default route from the provider with the **largest** connectivity, ISP A
  - Because most of the traffic is going to use this link

- If ISP A won’t provide a default:
  - Still run BGP with them, but discard all prefixes
  - Point static default route to the upstream link
  - Distribute the default in the IGP

- Request the full table from ISP B & C
  - Most of this will be thrown away
  - (“Default plus customers” is not enough)
Outbound load-balancing strategy

- How to decide what to keep and what to discard from ISPs B & C?
  - Most traffic will use ISP A link — so we need to find a good/useful subset
- Discard prefixes transiting the global transit ISPs
  - Global transit ISPs generally appear in most non-local or regional AS-PATHs
- Discard prefixes with ISP A’s ASN in the path
  - Makes more sense for traffic to those destinations to go via the link to ISP A
Outbound load-balancing strategy

- Global Transit ISPs include:
  - 209 CenturyLink
  - 701 VerizonBusiness
  - 1239 Sprint
  - 1668 AOL TDN
  - 2914 NTT America
  - 3549 Level 3
  - 3356 Level 3
  - 3561 Savvis
  - 7018 AT&T
ISP B peering Inbound AS-PATH filter

```
ip as-path access-list 1 deny _209_
ip as-path access-list 1 deny _701_
ip as-path access-list 1 deny _1239_
ip as-path access-list 1 deny _3356_
ip as-path access-list 1 deny _3549_
ip as-path access-list 1 deny _3561_
ip as-path access-list 1 deny _2914_
ip as-path access-list 1 deny _7018_
!
ip as-path access-list 1 deny _ISPA_
ip as-path access-list 1 deny _ISPC_
!
ip as-path access-list 1 permit _ISPB$
ip as-path access-list 1 permit _ISPB_[0-9]+$ nip as-path access-list 1 permit _ISPB_[0-9]+_[0-9]+$ nip as-path access-list 1 permit _ISPB_[0-9]+_[0-9]+_[0-9]+$ nip as-path access-list 1 deny .*
```

Don’t need ISPA and ISPC prefixes via ISPB
Outbound load-balancing strategy: ISP B peering configuration

- **Part 1: Dropping Global Transit ISP prefixes**
  - This can be fine-tuned if traffic volume is not sufficient
  - (More prefixes in = more traffic out)

- **Part 2: Dropping prefixes transiting ISP A & C network**

- **Part 3: Permitting prefixes from ISP B, their BGP neighbours, and their neighbours, and their neighbours**
  - More AS_PATH permit clauses, the more prefixes allowed in, the more egress traffic
  - Too many prefixes in will mean more outbound traffic than the link to ISP B can handle
Outbound load-balancing strategy

- Similar AS-PATH filter can be built for the ISP C BGP peering
- If the same prefixes are heard from both ISP B and C, then establish proximity of their origin ASN to ISP B or C
  - e.g. ISP B might be in Japan, with the neighbouring ASN in Europe, yet ISP C might be in Europe
  - Transit to the ASN via ISP C makes more sense in this case
Inbound load-balancing strategy

- The largest outbound link should announce just the aggregate
- The other links should announce:
  a) The aggregate with AS-PATH prepend
  b) Subprefixes of the aggregate, chosen according to traffic volumes to those subprefixes, and according to the services on those subprefixes
- Example:
  - Link to ISP B could be used just for Broadband/Dial customers — so number all such customers out of one contiguous subprefix
  - Link to ISP C could be used just for commercial leased line customers — so number all such customers out of one contiguous subprefix
Router A: eBGP Configuration
Example

```
router bgp 100
 network 100.10.0.0 mask 255.255.224.0
 neighbor 122.102.10.1 remote 110
 neighbor 122.102.10.1 prefix-list default in
 neighbor 122.102.10.1 prefix-list aggregate out

! ip prefix-list default permit 0.0.0.0/0
ip prefix-list aggregate permit 100.10.0.0/19
!```
router bgp 100
 network 100.10.0.0 mask 255.255.224.0
 neighbor 120.103.1.1 remote 120
 neighbor 120.103.1.1 filter-list 1 in
 neighbor 120.103.1.1 prefix-list ISP-B out
 neighbor 120.103.1.1 route-map to-ISP-B out
 neighbor 121.105.2.1 remote 130
 neighbor 121.105.2.1 filter-list 2 in
 neighbor 121.105.2.1 prefix-list ISP-C out
 neighbor 121.105.2.1 route-map to-ISP-C out

ip prefix-list aggregate permit 100.10.0.0/19

...next slide
Router B: eBGP Configuration

Example

ip prefix-list ISP-B permit 100.10.0.0/19
ip prefix-list ISP-B permit 100.10.0.0/21

ip prefix-list ISP-C permit 100.10.0.0/19
ip prefix-list ISP-C permit 100.10.28.0/22

route-map to-ISP-B permit 10
match ip address prefix-list aggregate
set as-path prepend 100

route-map to-ISP-B permit 20

route-map to-ISP-C permit 10
match ip address prefix-list aggregate
set as-path prepend 100 100

route-map to-ISP-C permit 20
What about outbound backup?

- We have:
 - Default route from ISP A by eBGP
 - Mostly discarded full table from ISPs B&C

- Strategy:
 - Originate default route by OSPF on Router A (with metric 10) — link to ISP A
 - Originate default route by OSPF on Router B (with metric 30) — links to ISPs B & C
 - Plus on Router B:
 - Static default route to ISP B with distance 240
 - Static default route to ISP C with distance 245
 - When link goes down, static route is withdrawn
Outbound backup: steady state

- Steady state (all links up and active):
 - Default route is to Router A — OSPF metric 10
 (Because default learned by eBGP ⇒ default is in RIB ⇒ OSPF will originate default)
 - Backup default is to Router B — OSPF metric 20
 - eBGP prefixes learned from upstreams distributed by iBGP throughout backbone
 - (Default can be filtered in iBGP to avoid “RIB failure error”)
Outbound backup: failure examples

- Link to ISP A down, to ISPs B&C up:
 - Default route is to Router B — OSPF metric 20
 - (eBGP default gone from RIB, so OSPF on Router A withdraws the default)

- Above is true if link to B or C is down as well

- Link to ISPs B & C down, link to ISP A is up:
 - Default route is to Router A — OSPF metric 10
 - (static defaults on Router B removed from RIB, so OSPF on Router B withdraws the default)
Other considerations

- Default route should not be propagated to devices terminating non-transit peers and customers
- Rarely any need to carry default in iBGP
 - Best to filter out default in iBGP mesh peerings
- Still carry other eBGP prefixes across iBGP mesh
 - Otherwise routers will follow default route rules resulting in suboptimal traffic flow
 - Not a big issue because not carrying full table
router bgp 100
 network 100.10.0.0 mask 255.255.224.0
 neighbor ibgp-peers peer-group
 neighbor ibgp-peers remote-as 100
 neighbor ibgp-peers prefix-list ibgp-filter out
 neighbor 100.10.0.2 peer-group ibgp-peers
 neighbor 100.10.0.3 peer-group ibgp-peers
!
ip prefix-list ibgp-filter deny 0.0.0.0/0
ip prefix-list ibgp-filter permit 0.0.0.0/0 le 32
!
Three upstreams, unequal bandwidths:

Summary

- Example based on many deployed working multihoming/loadbalancing topologies
- Many variations possible — this one is:
 - Easy to tune
 - Light on border router resources
 - Light on backbone router infrastructure
 - Sparse BGP table \Rightarrow faster convergence
Service Provider
Multihoming

ISP Workshops
Thank you!

End of Session