Cryptography Application
PGP

MZS

bd U
fak @bd b

mailto:fakrul@bdhub.com

Security issues for E-mail on the

Confidentiality

Integrity

Authenticity

Network admin can read your e-mail.

Webmail provider can read your e-mail.

LAN user may read your e-mail by monitoring
tool.

Even in some hotel, | could have chance to read

E-mail contents may be changed by some
attacker on the network.

Easy to set any e-mail headers like “From”.
Any other e-mall headers can be set anything
you want.

Difficult to know it is true.

Targeted Attack

* Attacks on information security which seek to affect a specific
organization

* Or group, rather than indiscriminately. Some may be customized
for a specific target organization or group.

 An e-mail with suspicious file attached
e Executable binary
 Word document file

e Database application file

Targeted Attack

To: your e-mail address
From: Fakrul Alam fakrul@dhakacom.com

Subject: my request
Hello,

| have been looking for someone who can answer questions of the

attached file. | hope you can do that and reply me.

Thanks ! .@_J

question.doc

Example of Spoof Malil

by spamwall.dhakacom.com (Postfix) with ESMTP id 7@EF3BA13F8
for <fakrul@dhakacom.com>; Tue, 12 Jun 2012 ©4:39:04 +0600 (BDT)
Received: (gmail 62722 invoked from network); 12 Jun 2012 ©5:34:59 +0700
X-Spam-Level: xwxioiorx
X-Spam-Status: No, hits=7.6 required=8.90
tests=MISSING_HEADERS,RAZOR2_CF_RANGE_51_10@,RAZOR2_CF_RANGE_E8_51_100,RAZ0OR2_CHECK,SUBJ_ALI
Received: from smtp3.dnet.net.id (HELO newwebmail.dnet.net.ifl) (202.148.1.233)
by smtp3.dnet.net.id (qpsmtpd/©.84) with ESMTP; Tue, 12 Plun 2012 ©05:34:54 +0700
Received: from 94.41.250.182
(SquirrelMail authenticated user raphael@dnet.net.id
by newwebmail.dnet.net.id with HTTP;
Tue, 12 Jun 2012 ©5:34:54 +0700 (WIT)
. JSULaoL JUvCLoUZ0UuS0o" q¢ Shiewweomail.dnet.net. id>

From: "Dhakacom.com Mail Manager" <webadmin@dhakacom.com>

MIME-Version: 1.9

Content-Type: text/plain;charset=is0-8859-1
Content-Transfer-Encoding: 8bit

X-Priority: 3 (Normal)

Importance: Normal

X-Virus-Checked: Checked by ClamAV on smtp3.dnet.net.id
X-dhakacom-MailScanner-ID: 70EF3BA13F8.7A916
X-dhakacom-MailScanner: Found to be clean
X-dhakacom-MailScanner-From: webadmin@dhakacom.com

CC: undisclosed-recipients:;

—~ -~ . -

Cryptography:
The Two Basic Encryption Techniques

e Symmetric and Asymmetric (public-key)
e The latter is widely accepted

PGP is based on Asymmetric (Public-Key) Encryption

Symmetric Encryption

* |[nvolves only one key, which is used by both the sender
for encrypting and the recipient for decrypting

o Symmetric algorithms: blowfish, Triple-DES, AES
(Advanced Encryption Standard), CAST (Carlisle Adams
and Stafford Tavares) , IDEA (International Data Encryption
Algorithm, legally restricted, but the other algorithms may
be freely used)

* Problem: the means of distributing the key

Asymmetric (Public-Key)
Encryption

* Solves the problem of distributing keys by using one pair of
complimentary keys, one public and the other private.

e Public: freely exchanged to others without fear of
compromising security.

* Private: only you have access, should be carefully
protected.

A message Is encrypted to a recipient using the recipient's
public key, and it can only be decrypted using the
corresponding private key.

Asymmetric Encryption Refresher

* One key mathematically related to the other.

* Public key can be generated from private key. But NOT
vice versa.

* |t you encrypt data with the public key, you need to private
key to decrypt

e You can sign data with the private key and verify the
signature using the public key

Keys

* Private key is kept e Public key is
SECRET. distributed.

e You should encrypt your * Anyone who needs to
private key with a send you confidential
symmetric passphrase. data can use your

public key

3

Y

[Public
| ¥
\

Signing & Encrypting
e Data Is encrypted with a public key to be decrypted with

the corresponding private key.

* Data can be signed with the private key to be verified by
anyone who has the corresponding public key.

» Since public keys are data they can be signed too.

How PGP Works

SENDER - SIGNING AND ENCRYPTION PROCESS

Sender’s Receiver’s
Private Key Public Key

Raw File Signed & Email or FTP
Encrypted File

RECEIVER - DECRYPTION AND VERIFICATION PROCESS

Receiver’s Sender’s
Private Key Public Key

Email or FTP Signed & Raw File
Encrypted File

Trust

e Centralized / hierarchal trust — where certain globally
trusted bodies sign keys for every one else.

* Decentralized webs of trust — where you pick who you trust
yourself, and decide it you trust who those people trust in
furn.

 Which works better for what reasons”?

Sample Web of Trust

PGP by GnuPG

e Create your keys

e Public key

* Private key (secret key)
 |dentify key by

o Key ID (like OX23AD8EF6)
 \erity others’ public key by

« Key fingerprint
e Find keys on PGP key servers

e Like http://pgp.mit.edu

http://pgp.mit.edu

Installing GnuPG Software

» Core software either commercial from pgp or opensource
from gnupg.

e https://www.gpg4win.org/ for windows
* https://www.gpgtools.org/ for OS X
e Your package manager for Linux/UNIX

e Source code from https://www.gnupg.org/

https://www.gnupg.org/

How PGP Works

* Check your GnuPG version

fakrul@rnd:~$

fakrul@rnd:~$ gpg —--version

gpg (GnuPG) 1.4.12

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Home: ~/.gnupg

Supported algorithms:

Pubkey: RSA, RSA-E, RSA-S, ELG-E, DSA

Cipher: 3DES, CASTS5, BLOWFISH, AES, AES192, AES256, TWOFISH, CAMELLIA128,
CAMELLIA192, CAMELLIA256

Hash: MD5, SHAl, RIPEMD160, SHA256, SHA384, SHAS512, SHA224

Compression: Uncompressed, ZIP, ZLIB, BZIP2

fakrul@rnd:~$

How PGP Works

* Use “gpg --help” or “man gpg” for manuals.

Commands:

--sign [file] make a signature

--clearsign [file] make a clear text signature
--detach-sign make a detached signature

-—encrypt encrypt data

—-—symmetric encryption only with symmetric cipher
-—-decrypt decrypt data (default)

--verify verify a signature

--list-keys list keys

--list-sigs list keys and signatures
--check-sigs list and check key signatures
--fingerprint list keys and fingerprints
--list-secret-keys list secret keys

-—-gen-key generate a new key pair
--delete-keys remove keys from the public keyring
--delete-secret-keys remove keys from the secret keyring
--sign-key sign a key

--lsign-key sign a key locally

-—-edit-key sign or edit a key

-—-gen-revoke generate a revocation certificate
-—export export keys

--send-keys export keys to a key server
--recv-keys import keys from a key server
--search-keys search for keys on a key server
--refresh-keys update all keys from a keyserver
--import import/merge keys

-—-card-status print the card status

--card-edit change data on a card

--change-pin change a card's PIN
--update-trustdb update the trust database

Create public & private key pair

* (Create Public & Private key pairs for GnuPG.

fakrul@rnd:~$ gpg —--gen-key

gpg (GnuPG) 1.4.12; Copyright (C) 2012 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

gpg: directory '/home/fakrul/.gnupg' created
gpg: new configuration file ‘/home/fakrul/.gnupg/gpg.conf' created
gpg: WARNING: options in "/home/fakrul/.gnupg/gpg.conf' are not yet active during this run
gpg: keyring ' /home/fakrul/.gnupg/secring.gpg' created
gpg: keyring " /home/fakrul/.gnupg/pubring.gpg' created
Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)
Your selection? |

Find the above screen and choose “algorithm” of the encryption. At this time, we’ll choose “RSA
and RSA” as a default.

Create public & private key pair

 Some people say that 1024 bit not strong enough anymore.
So we'll choose 2048 bit for this time. After that we'll have
to think about the expire date of the key pairs.

Please select what kind of key you want:

(1) RSA and RSA (default)

(2) DSA and Elgamal T
(3) DSA (sign only) Note: It is important to select

(4) RSA (sign only) expire period. It is basically

Your selection? 1 up to your security policy to
RSA keys may be between 1024 and 4096 bits long. decide this one. Several

What keysize do you want? (2048) 2048 _ _ _
Requested keysize is 2048 bits organization operate with 1

Please specify how long the key should be valid. RV¥Td Ii you choose one year

k 3 [] |]
0 = key does not expire for this, you have to notify to
<n> key expires in n days

<n>w key expires in n weeks users abOUt the Changing Of
<n>m = key expires in n months the keys.
<n>y = key expires in n years

Key is wvalid for? (0)

Create public & private key pair

* Type your “Real name” and “e-mail address” for this.

Key is wvalid for? (0) ly
Key expires at Wed 30 Apr 2014 05:45:23 PM BDT
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID

from the Real Name, Comment and Email Address in this form:
"Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Fakrul Alam

Email address: fakrul@dhakacom.com

Comment: Fakrul Alam / PGP Key

You selected this USER-ID: : :

"Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>" Note: Please keep in mind

that anyone can make your

Change (N)ame, (C)omment, (E)mail or (O)kay/ (Q)uit? keys of e-mail address. So
what is the way that you can
make sure that your key
belongs your key ? The

answer is “fingerprint”.

Create public & private key pair

* Enter passphrase for 1st time & repeat it.

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

Repeat passphrase:

Note: Please do not forget
this password and make
sure the password is strong
enough for brute forcing.

Create public & private key pair

 GnuPG automatically creates the keys

Not enough random bytes available. Please do some other work to give
the 0S a chance to collect more entropy! (Need 284 more bytes) Note 1: When generating the

+++++ key pairs, the operating

We need to generate a lot of random bytes. It is a good idea to perform system needs many random

some other action (type on the keyboard, move the mouse, utilize the numbers. It is recommended

disks) during the prime generation; this gives the random number .

generator a better chance to gain enough entropy. to do sornethlng on the
system for that.

Not enough random bytes available. Please do some other work to give

the OS a chance to collect more entropy! (Need 92 more bytes)

ST Y Y Note 2: Read these
messages carefully and

Not enough random bytes available. Please do some other work to give should know the contents

the 0S a chance to collect more entropy! (Need 111 more bytes)
o o bttt below

gpg: /home/fakrul/.gnupg/trustdb.gpg: trustdb created 4(ey|[)
gpg: key B2CF94E5 marked as ultimately trusted -\What is the “trust”
public and secret key created and signed.

-Key Length
checking the trustdb -Expires date
3 marginal (s) needed, 1 complete(s) needed, PGP trust model 4<ey1ﬂwgerpﬂnt

: depth: 0 wvalid: 1 signed: 0 trust: 0-, 0gq, On, Om, 0f, 1lu
: next trustdb check due at 2014-04-30
2048R/B2CF94E5 2013-04-30 [expires: 2014-04-30]
Key fingerprint = 0302 768A C6F3 8EB3 3ED2 C511 FE72 5A7A B2CF 94ES

Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>
2048R/33D42A92 2013-04-30 [expires: 2014-04-30]

Create public & private key pair

* List your keys

fakrul@rnd:~$ gpg --list-keys B2CF94ES5

pub
uid
sub

2048R/B2CF94E5 2013-04-30 [expires: 2014-04-30]

Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>

2048R/33D42A9%2 2013-04-30 [expires: 2014-04-30]

fakrul@rnd:~$ gpg --list-keys fakrul@Rdhakacom.com

pub
uid
sub

2048R/B2CF94E5 2013-04-30 [expires: 2014-04-30]

Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>

2048R/33D42A92 2013-04-30 [expires: 2014-04-30]

Note: Please remember the
option “gpg --list-keys™ you
can list keys in your
keyrings. And you can use
both Key ID and e-mail
address.

Create public & private key pair

 Where is the key files

fakrul@rnd:~$ cd .gnupg/
gnupg$

fakrul@rnd:~/.

total 40K
2
34

fakrul@rnd:

Just under the “.gnupg” directory of your home directory.

fakrul
fakrul
fakrul
fakrul
fakrul
fakrul
fakrul
fakrul

. gnupg$

ls -lah

fakrul
fakrul
fakrul
fakrul
fakrul
fakrul
fakrul
fakrul

gpg.conf

pubring.gpg
pubring.gpg~
random_ seed

secring.gpg
trustdb.gpg

Public keys stored in : pubring.gpg. Private keys are stored in : secring.gpg

You can choose your favorite option in : gpg.conf

Sign messages & verify it

» Create file for encryption

fakrul@rnd:~/.gnupg$
fakrul@rnd:~/.gnupg$ echo "This is a test message.” > test sign

fakrul@rnd:~/.gnupg$ echo "Hope we can sign it." >> test sign
fakrul@rnd:~/.gnupg$ cat test sign

This is a test message.
Hope we can sign it.
fakrul@rnd:~/.gnupg$ |

* Sign the file

fakrul@rnd:~/.gnupg$ gpg --clearsign test_sign

You need a passphrase to unlock the secret key for
user: "Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>"

2048-bit RSA key, ID B2CF94E5, created 2013-04-30

Enter passphrase: |

Sign messages & verify it

o After typing your passphrase correctly, please try the “Is —
" and find the file “test_sign.asc”. That is a signed file.
Let’'s see the inside of file.

fakrul@rnd:~/.gnupg$ ls
gpg.conf pubring.gpg pubring.gpg~ random seed secring.gpg test_sign trustdb.gpg
fakrul@rnd:~/.gnupg$ cat test_sign.asc
BEGIN PGP SIGNED MESSAGE
Hash: SHAl

This is a test message.
Hope we can sign it.
BEGIN PGP SIGNATURE
Version: GnuPG v1.4.12 (GNU/Linux)

iQEcBAEBAgAGBQJRf7QcAROJEPSyWnqyz5T1rY4H/ideft0bBu31l0tUvG+4cAvGl
OVj7vLkB/Ty8jkaCFIpzPllYrhagcjTVSwCwXQ77SEaS5hrRN7Wa/sfDbLsXBLJpK
OHgzDSgTErUbT2tjhFmrVtvmfqzuE52RqZkF4YjjSJIX+cysdgY/WydnVWakLFBhs
4wgcXU51V2pPJ08HGpSwalaF21VbnyLrseYdTXAwugn60Iybh+7gSDOVCeT9/YPu
jbZniQEhBA7£dil18juTcwP61GZ2A/gLAyPaBKrHgsyABgN/7YnFbKnAXVPUiTZc5
gF/nkgFPR5wQ9kuPCsK2Uy24WrVU+gyDdBzFtBQPFDKZR2pCXG7HIbcxcuhXG7I=
=1V5Q
END PGP SIGNATURE

Sign messages & verify it

e Verification Process

fakrul@rnd:~/.gnupg$ gpg --verify test sign.asc
gpg: Signature made Tue 30 Apr 2013 06:07:56 PM BDT using RSA key ID B2CF94ES5

gpg: Good signature from "Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>"
fakrul@rnd:~/.gnupg$ |

Note: Please find the message “Good signature from” and that is
a message that gpg command can successfully verify the

message. That means the file is surely signed by your private
keys.

fakrul@rnd:~/.gnupg$
fakrul@rnd:~/.gnupg$ gpg --verify test _sign.asc

gpg: Signature made Tue 30 Apr 2013 06:07:56 PM BDT using RSA key ID B2CF94ES5
gpg: BAD signature from "Fakrul Alam (Fakrul Alam / PGP Key) <fakrul@dhakacom.com>"

fakrul@rnd:~/.gnupg$ I

Note: You may find the message “BAD signature from” that
means the file may be altered by someone. Do you want to see

the inside ?

Export / Import Public Key

e Export your public key

fakrul@rnd:~/.gnupg$ gpg -a --export fakrul@dhakacom.com
BEGIN PGP PUBLIC KEY BLOCK
Version: GnuPG v1.4.12 (GNU/Linux)

mQENBFF/sO8BCAC827VLM+1PbztyPPWKTSI1OMpg45glakdBAccZZQe9GX4YuUPi
epP3VxKAMgTKk21Au6kRiAOVMNGhXJ4waB44VzGhyjigfuztL3RH801lu+CJRraGj
e+76KajST4gy+hJCiDSUwU3+0JNLajVHUzPmSu6/v3LzVecxuQnhcgyD85zPqgacjI
JgFVu76j6DEjrhzjd2UlfSdNoBhltfasDo5Mr6loyekXNForE1jI3X7foz26aKuN
UueUICRH60CvOn4xVaLU71R76aTxZigaCQUgUCoBwdyfgsvBhQh2GgxD6émj9pGIs
/nROw6PCbaBllrxLOTHTdD1DVuvJWTsirGGhABEBAAGOQOUZha3J1bCBBbGFtIChG
YWt ydWwgQWxhbSAvIFBHUCBLZXkpIDxmYWtydWxAZGhha2Fjb20uY29tPokBPgQT
AQIAKAUCUX+w7wIbAwUJAeEzgAYLCQgHAWIGFQgCCQoLBBYCAWECHgECF4AACgkQ
/nJaerLP1OW9qgf/X9vTOvz£fX592d4isY0xoGEzsaXvNtLila+Gu7kMUXNAUGxwz
gL1KJLoKN5Y9/uxCRym+EdiEkPTIwxiKq/gVqR5fRzHkhmI4vZ4GfAHmkH1J6BxL
6GfCOjwiLcNdffNP0eONSg9io6Q1RAAVU4PSYBxHg71i50hx1FzR+/Ecl7J/Pr408
cbqjeHC3LTQWZgW1BPtQbrvt fPYUcQtcqlBal69F1ywKz7C£37hnTpSxZIMQL+akK
LcTDRHNfQ120rpJdb81lrNtvolfdANBS5JjgPOGDC+szxz0SyPwCttr5sanJy3DHVaT
1lwgT7d9IQCi8fVcMdDO0cjbp40Om/JO/AUY1gchLkBDQRRE7DvAQgAs44En20AcLAM
IuQuhp83D7uX4Zsp4EJGnDtCX30+2QU4staVmVeGAZIBeOd+iIvRlsLmKmvSdDCa
42TU3Yrk+1VcJjUbB1dFId£3n0X1JbrJh/e0a+gWglSIVI301TKO01Z6Y/t0Okxkh
OU/HIbUtNrTrgqPrgmXwiD08JInwaGlN3FppUQ/9mLCmHIS5vGjFOwg8otota2acHHS
y90gaopPsi3AEYdfgdHyHONOgxzK4BQ324wbiDppUoFR/0/0sqgYKURaWmiPr6Y0
T1WwJ3dijCHb84JuoVPvsy4XtvOJSUtfuazZ13JKR2gqQo4gKkaZxYG6++3DGAujk
Nm2sa8+0QwARAQABiQE1BBgBAgAPBQIJREf7DvAhsMBQkB4TOAAACJEPSyWnqyz5T1
Q38H/0010X71iyXONoFyn/£fSUjXNHxhnEMt1A7MKH1a4EdgsbpW92/hTPWEfI7qz
VROZFbJUjXgWOFLrd5I0BeDxTpsdhbKELGX3S1MimlogEilM41i/z1zCpKvMFGlrf
1vkUYz+oDOWxT2jsvavnE+fYM229rd4bxk2ulxVgoSb6/7FwBWsUXVHrvcjHRPgHG
H/d6fWIGpIRzof0SeKmlWPvz0z/rN9/1JkEpJAmws1lpTiC6ClgXAVG2X3ES50HTCL
ay8DwOWRUD+tgHwTFR6F+FpHC/4cBoI65npaXnRUeH1hggJ2NKLybDdmLOL2N/ X
2ADI8ibfMZYWKnLvgRIJmAHBpic=

=tZiU

END PGP PUBLIC KEY BLOCK

Note: You can export key to a
file using:

gpg -a —--export
fakrul@dhakacom.com >
fakrul public.key

Export / Import Public Key

e Import Key

fakrul@rnd:~/.gnupg$ gpg --import fakrul bdhub.key
gpg: key 109C56FC: public key "Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>" imported

gpg: Total number processed: 1

gpg: imported: 1 (RSA: 1)
fakrul@rnd:~/.gnupg$

* Find the imported key

fakrul@rnd:~/.gnupg$ gpg --list-key 109C56FC
2048R/109C56FC 2013-02-05 [expires: 2020-02-05]
Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>

[Jpeg image of size 10334]
sub 2048R/F66ACECA 2013-02-05 [expires: 2020-02-05]

Export / Import Public Key

* Make sure fingerprint is right

fakrul@rnd:~/.gnupg$ gpg --fingerprint 109C56FC
pub 2048R/109C56FC 2013-02-05 [expires: 2020-02-05]
Key fingerprint = 94EA 86AD 428C 4072 7995 9150 E338 712B 109C 56FC

uid Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>
uid [jpeg image of size 10334]
sub 2048R/F66ACECA 2013-02-05 [expires: 2020-02-05]

Encrypt Message

 Make some file to encrypt

fakrul@rnd:~/.gnupg$ echo "This is a file for encryption" > test encrypt
fakrul@rnd:~/.gnupg$ echo "Can you read me" >> test encrypt
fakrul@rnd:~/.gnupg$ cat test encrypt

This is a file for encryption
Can you read me
fakrul@rnd:~/.gnupg$

° Encrypt the file % gpg --encrypt --armor -r RECEIVER EMAIL ID -u
SENDER EMAIL ID test encrypt

fakrul@rnd:~/.gnupg$ gpg --encrypt --armor -r fakrul@bdhub.com -u fakrul@dhakacom.com test_encrypt
gpg: F66ACECA: There is no assurance this key belongs to the named user

pub 2048R/F66ACECA 2013-02-05 Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>
Primary key fingerprint: 94EA 86AD 428C 4072 7995 9150 E338 712B 109C 56FC
Subkey fingerprint: E2FB 4B8C E12A C043 A578 DB66 CAAQ 09C8 F66A CECA

It is NOT certain that the key belongs to the person named
in the user ID. If you *really* know what you are doing,
you may answer the next question with yes.

Use this key anyway? (y/N) y

Encrypt Message

* [ry to read encrypted message

fakrul@rnd:~/.gnupg$ cat test encrypt.asc

Version: GnuPG v1.4.12 (GNU/Linux)

hQEMA8qgCcj2as7KAQEf/bMc79wwCaEl1l1lUbdW13Dz6YEOUDaaMG9dBbNY8iK+ijfA
usow8AZJBH/L94HY83t+0zmWbMMhyXwCn3DN6VtghfAtuNk1QFiqgiTQ+njHg33cW
TT3pcwsDmgVhJ1D+WuKgezY59HSWylkNJLS7t4Tyw3ROLyjlEyg20g3Bv4VE2sBM

Pr3nHub6TweVHdmp7kQeW6LrLe93pjnXWtShVEivuvRuhfoV3XPfUQIX+XH6792dU
1vZYaX1lhglrVJoV6rOgWA/IYPUon/e/n4CcEETu2TqPoTwvbs96qmSwB8FeFOdHC
QeaEHddd1z04I0112xnGfJ3BmXuJ4s3s/dHmNDepL9JuAboumgGemMckLA1b1RIX
ClITHIX+wLA8zWj9u0Z8t9sGOS1uPNnyj1IZWUH3CclptT+jtEd150PMrfx+I0bac
6gzFEb0a20aG/hq2sUXPz+CDOFSRAxREaxAylcNctnuCKZSyOLMGnVBMy 609gNY=
=fBOB

Decrypt Message

, # gpg --output OUTPUT FILE NAME --
* Decrypt the file. decrypt ENCRYPTED FILE NAME

FakrulMac:Downloads rapappu$ gpg --output testl.txt --decrypt test.txt.asc

You need a passphrase to unlock the secret key for
user: "Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>"
2048-bit RSA key, ID F66ACECA, created 2013-02-05 (main key ID 109C56FC)

gpg: encrypted with 2048-bit RSA key, ID F66ACECA, created 2013-02-05
"Fakrul Alam (bdHUB pgp key) <fakrul@bdhub.com>"

 Read the file

FakrulMac:Downloads rapappu$ cat testl.txt
This is an encrypted message.

Let see if you can decrypt it.
FakrulMac:Downloads rapappu$

Key Management

e Using graphical tools based on what you installed above:
 GPG Keychain Access for OS X
* Kleopatra or GPA for windows

e Using the command line:

* gpg --gen-key

 (Generate a key — use your email address. The comment
field can be left blank.

Key Management

* On printed media: published book or business cards:
e Digitally in emall or using sneaker-net
* Online using the openpgp key servers.

 Still does not tell you if you trust the key.

Key Management

* Expiry dates ensure that it your private key Is
compromised they can only be used till they expire.

» Can be changed after creating the key.

* Before expiry, you need to create a new key, sign it with
the old one, send the signed new one to everyone in your
web of trust asking them to sign your new key.

Key Management - Revocation

 Used to mark a key as invalid before its expiry date.

* Always generate a revocation certificate as soon as you
create your key.

* Do not keep your revocation certificate with your private
key.

* gpg --gen-revoke IDENTITY

Key Management - Partying

e Key signing parties are ways to build welbs of trust.

 Each participant carries identification, as well as a copy of
their key fingerprint. (maybe some $ as well [¥]

e Each participant decides it they're going to sign another
key based on their personal policy.

e Keys are easiest kept in a keyring on an openpgp
keyserver in the aftermath of the party.

Interesting gpg commands

Get help for gpg options

* gpg —--help AND man gpg

Print the fingerprint of a particular key

e gpg --fingerprint IDENTITY

IDENTITY = email or PGP key ID

Export a public key to an ASCII armored file.

e gpg -a --output my-public-key.asc --export IDENTIY

Interesting gpg commands

* Import a key from a file into your keyring

* gpg --import public.asc
* Import a key from a keyserver

* gpg --recv-keys --keyserver hkp://keys.gnupg.net
e Send your key to a keyserver

* gpg --send-keys --keyserver hkp://keys.gnupg.net
e Sign a key

* gpg --sign-key IDENTITY

Interesting gpg commands

e Export public key

* gpg -ao public.key —export KEYID
e Export private key

* gpg -ao private.key —export-secret-keys KEYID
* Generate Revocation Key

* gpg -output revoke.asc —gen-revoke
EMAILADDRESS

Create Your Own Key

