

Some Challenges...

- Control plane scale and complexity
- Many protocol and features, also many bugs
- Forwarding table size and FIB capacity
- Programmatic control over BGP policy
- Hyper scale datacenters
 - Many encapsulations
 - Lot of links
 - Commodity hardware
 - IP address mobility
- Inter-DC vs External workloads
 - Latency-sensitive vs bulk
 - Scheduled vs unscheduled

What's the goal?

- Reduce complexity and state in the network
 - Number of protocols
 - Control plane state
- Unified forwarding plane for core, edge and datacenter
- Programmatic interface to the network
- Reduce feature dependencies
- Leverage commodity hardware across network layers
- Reduce FIB table size

Segment Routing Primer

- Label-based source routing aka SPRING
- Uses existing MPLS data plane
- IGP floods labels throughout the SR domain
- Node-SIDs Devices are configured with globally significant labels
 - Installed on all devices in the domain
- Adjacency-SIDs Each SR router generates locally significant link labels
 - Installed only locally
 - They are still flooded to the entire domain

Use of Node SIDs, label distribution via IGP

Use of Adjacency SIDs and Shortest Path Override

Packet with 16007, 24001, 16003 (Top)

Binding Segments

• Binding SID represents a kind of a tunnel, pop Binding SID, push one or more labels

Software Driven Network

Unified Forwarding – Core, Edge and Datacenter

Unified Forwarding – Core

- SR Extensions for IGP
- PCE/PCEP with SR-TE
- BGP-LU

Core Traffic Engineering

- PCE/PCEP
 - SR-TE
- BGP-TE
 - BGP-LU

PCE/PCEP with SR-TE

- Stateful PCE components
 - Path computation element (PCE)
 - Path computation client (PCC)
 - Path computation element communication protocol (PCEP)
- Offline computation and program path using PCEP

PCE/PCEP with SR-TE

Offline computation and PCE/Controller will program LSPs

BGP Traffic Engineering (BGP-TE)

- X/8 → nhop address, label stack 1, Link Bandwidth 1
 nhop address, label stack 2, Link Bandwidth 2
- With Binding SID, any label in the stack can be a binding segment label

BGP-TE Load Balancing

BGP-TE Unequal Cost Load Balancing

Unified Forwarding – Datacenter

BGP-LU BGP-LU BGP-LU BGP-LU Datacenter CLOS with SR

- BGP Prefix-SIDs
- BGP-LU

Unified Forwarding – Core and Datacenter

Unified Forwarding – Core and Datacenter

Unified Forwarding – Edge

- Granular traffic engineering
 - Prefix based
 - AS based
 - Overriding egress next-hops
 - Performance based routing, diverting traffic based on performance and load
- Centralized control
 - peering egress control
 - Policy engine, reduces custom configuration and standardize peering policies
- Security
 - Remote black hole triggering
 - Inject flowspec rules

Data plane Monitoring

- Simplifies end-to-end monitoring
- Construct and signal probe packets for data plane health check
- Construct paths without creating state in the network

Useful URLs

- http://www.segment-routing.net/
- http://datatracker.ietf.org/wg/spring/documents/
- http://datatracker.ietf.org/wg/idr/documents/
- http://datatracker.ietf.org/wg/pce/documents/

Microsoft