Unified Forwarding with Segment Routing

Mohan Nanduri
August 3, 2014
Some Challenges...

• Control plane scale and complexity
• Many protocol and features, also many bugs
• Forwarding table size and FIB capacity
• Programmatic control over BGP policy
• Hyper scale datacenters
 • Many encapsulations
 • Lot of links
 • Commodity hardware
 • IP address mobility
• Inter-DC vs External workloads
 • Latency-sensitive vs bulk
 • Scheduled vs unscheduled
What’s the goal?

• Reduce complexity and state in the network
 • Number of protocols
 • Control plane state
• Unified forwarding plane for core, edge and datacenter
• Programmatic interface to the network
• Reduce feature dependencies
• Leverage commodity hardware across network layers
• Reduce FIB table size
Segment Routing Primer

• Label-based source routing aka SPRING
• Uses existing MPLS data plane
• IGP floods labels throughout the SR domain
• Node-SIDs – Devices are configured with globally significant labels
 • Installed on all devices in the domain
• Adjacency-SIDs - Each SR router generates locally significant link labels
 • Installed only locally
 • They are still flooded to the entire domain
Use of Node SIDs, label distribution via IGP
Use of Adjacency SIDs and Shortest Path Override
Binding Segments

- Binding SID represents a kind of a tunnel, pop Binding SID, push one or more labels.
Software Driven Network

- Bandwidth Arbitrator: Demand Aggregation
- Service Agent: Traffic Demand, Type of Traffic, Rate Limiting
- Global Traffic Engineering Agent
- Path Assignment
- Network Topology
- Traffic
- PCE/PCEP/BGP-LU

Service Hosts

Datacenter WAN
Unified Forwarding – Core, Edge and Datacenter
Unified Forwarding – Core

- SR Extensions for IGP
- PCE/PCEP with SR-TE
- BGP-LU
Core Traffic Engineering

- PCE/PCEP
 - SR-TE
- BGP-TE
 - BGP-LU
PCE/PCEP with SR-TE

- Stateful PCE components
 - Path computation element (PCE)
 - Path computation client (PCC)
 - Path computation element communication protocol (PCEP)
- Offline computation and program path using PCEP
• Offline computation and PCE/Controller will program LSPs
BGP Traffic Engineering (BGP-TE)

- X/8 → nhop address, label stack 1, Link Bandwidth 1
 nhop address, label stack 2, Link Bandwidth 2
- With Binding SID, any label in the stack can be a binding segment label
BGP-TE Load Balancing

X/24 -> nh:if1->Label Stack:16008, 16002 (top) -> BW:50%

X/24 ->nh:if2->Label Stack:16009,17001 (top) -> BW:50%
BGP-TE Unequal Cost Load Balancing

X/24 -> nh:if1->Label Stack:16008, 16002 (top) -> BW:70%

X/24 ->nh:if2->Label Stack:16009,17001 (top) -> BW:30%
Unified Forwarding – Datacenter

- BGP Prefix-SIDs
- BGP-LU
Unified Forwarding – Core and Datacenter

- SR Extensions for IGP
- PCE/PCEP with SR-TE
- BGP-LU and BGP Prefix SIDs
Unified Forwarding – Core and Datacenter

Core SR Forwarding DC2 Label (16005) to T-2

Core IGP - SR

DC SR Forwarding DC2 T-2 Label (16005)

POP T-2 Label (16005)

PHP, PoP Host Label (16007)
Unified Forwarding – Edge

- BGP Peer SID
- PCE/PCEP with SR-TE
- BGP-LU

100.0.1.0/24 Label stack 24001, 16006 (top)
Unified Forwarding – Edge

- Granular traffic engineering
 - Prefix based
 - AS based
 - Overriding egress next-hops
 - Performance based routing, diverting traffic based on performance and load

- Centralized control
 - Peering egress control
 - Policy engine, reduces custom configuration and standardize peering policies

- Security
 - Remote black hole triggering
 - Inject flowspec rules
Data plane Monitoring

• Simplifies end-to-end monitoring
• Construct and signal probe packets for data plane health check
• Construct paths without creating state in the network
Useful URLs
