Introduction to SDN

Muhammahmad Moinur Rahman

History of Networking

Blackbox networking equipments

Big name companies building switching/routing devices
Includes Proprietary/OEM Silicon Chip

Wrapped up with a closed source Operating System (e.g. A
desktop PC with MS Windows and MS Office)

Disadvantages of Current Scenario

Technology was not designed keeping today in mind
o Massive Scalability
o Multi Tenant Networks
o Virtualization
o Cloud Computing
o Mobility (Users/Devices/VM)

Disadvantages of Current
Scenario(Contd)

Protocols are Box Centric; Not Fabric Centric
o Difficult to configure correctly(consistency)
o Difficult to add new features(upgrades)
o Difficult to debug(look at all devices)

Disadvantages of Current
Scenario(Contd)

Closed Systems (Vendor Hardware)
o Stuck with given interfaces (CLI, SNMP, etc.)
o Hard to meaningfully collaborate
o Vendors hesitant to open up
o No way to add new features by yourself

ANSWER: Software Defined Networking

What is SDN?

SDN is a framework to allow network administrators to
automatically and dynamically manage and control a large
number of network devices, services, topology, traffic paths,
and packet handling (quality of service) policies using high-
level languages and APls. Management includes
provisioning, operating, monitoring, optimizing, and
managing FCAPS (fault, configuration, accounting,
performance, and security) in a multi-tenant environment.

Networking Planes

e Data Plane
o Carries Network User Traffic

e Control Panel
o Carried Signalling Traffic

e Management Panel
o Carries Administrative Traffic

SDN Architecture

APPLICATION LAYER | J

Business Applications

API

SDN
Control ;
Software Network Services

Control Data Plane interface
(e.g., OpenFlow)

CONTROL LAYER

INFRASTRUCTURE LAYER

Network Device Network Device Network Device

Network Device Network Device

Need for SDN - Virtualization

Use network resource

e without worrying about where it is physically located
e how much it is

e how itis organized

Need for SDN - Orchestration

Should be able to control and manage thousands of devices
with one command

Need for SDN - Programmable

Should be able to change behavior on the fly

Need for SDN - Dynamic Scaling

Should be able to change size, quantity, capacity

Need for SDN - Automation

To lower OpEx

Minimize manual involvement

Troubleshooting

Reduce downtime

Policy enforcement
Provisioning/Re-provisioning/Segmentation of resources
Add new workloads, sites, devices, and resources

Need for SDN - Visibility

Monitor resources, connectivity

Need for SDN - Performance

Optimize network device utilization

e Traffic engineering/Bandwidth management
Capacity optimization

Load balancing

High utilization

Fast failure handling

Need for SDN - Multi Tenancy

Tenants need complete control over their
e Addresses

e Topology

e Routing

® Security

Need for SDN - Service Integration

Provisioned on demand and placed appropriately on the
traffic path

e Load balancers

® Firewalls

® [ntrusion Detection Systems (IDS)

Alternative APIs

Southbound APIs: XMPP (Juniper), OnePK (Cisco)

Northbound APIs: I2RS, 12AEX, ALTO

e Overlay: VxLAN, TRILL, LISP, STT, NVO3, PWE3, L2VPN,
L3VPN

e Configuration APl: NETCONF

e Controller: PCE, ForCES

History

Feb, 2011 - OpenFlow 1.1 Released

Dec, 2011 - OpenFlow 1.2 Released

Feb, 2012 - “Floodlight” Project Announced
Apr, 2012 - Google announces at ONF

Jul, 2012 - Vmware acquires Nicira

Apr, 2013 - “OpenDaylight” Released

Hardware Internals

* Logical View of a Switch * Physical Architecture of a Switch

data plane

Applications

Network O.S.
ASIC

Internals of SDN

Current
Switch .
Vertical stack anplications
N I Network O.S. I
Network O.S. Southbound >DN
API
I—I SDN Switch
Decoupled
stack

* Southbound API: decouples the switch hardware from control function
— Data plane from control plane
* Switch Operating System: exposes switch hardware primitives

How SDN Works

. Controller (N. O.S.) .
Southbound
API

Implications of SDN

Current Networking

Applications
_ Applications
Network O.S.
Network O.S.

Applications
Network O.S.

SDN Enabled Environment

u Applications I

Global View
Controller (N. O.S.)

A

Programmatic
Control Southboun

d

A

Implications of SDN(Cont)

Current Networking

Applications
Network O.S.

Applications
Network O.S.

Applications

Network O.S

* Distributed protocols
* Each switch has a brain
* Hard to achieve optimal
solution
* Network configured indirectly
* Configure protocols
* Hope protocols converge

SDN Enabled Environment

u Applications I
. Controller (N. O.S.) .

Southbound
API

Global view of the network

* Applications can achieve optimal
Southbound API gives fine grained control
over switch

* Network configured directly

* Allows automation

* Allows definition of new interfaces

. openseer debugging tools
ENVI (GUI) LAV _ Applications
Console FlowVisor Software
Commercial Switches
Software Broadcom
Sa———
PCEngine : Switches

Pronto, Juniper..
and many more

25

Dimensions of SDN Environments:

Vendor Devices

Vertical Stacks

Whitebox Networking

* Vendor bundles switch and
switch OS

e Restricted to vendor OS and
vendor interface

* Low operational overhead
* One stop shop

* Vendor provides hardware with
no switch OS
* Switch OS provided by third

party
* Flexibility in picking OS

* High operational overhead
e Must deal with multiple vendors

Dimensions of SDN Environments:

Switch Hardware

Virtual: Overlay

Physical: Underlay

* Pure software implementation
* Assumes programmable virtual switches
* Run in Hypervisor or in the OS
* Larger Flow Table entries (more memory and CPU)

* Backward compatible
* Physical switches run traditional protocols

* Traffic sent in tunnels
* Lack of visibility into physical network

* Fine grained control and visibility into network

* Assumes specialized hardware
* Limited Flow Table entries

Dimensions of SDN Environments:
Southbound Interface

OpenFlow

BGP/XMPP/IS-IS/NetConf

* Flexible matching
* L2, L3, VLAN, MPLS

* Flexible actions
* Encapsulation: IP-in-IP
* Address rewriting:

* |P address
* Mac address

* Limited matching
* |S-IS: L3
* BGP+MPLS: L3+MPLS

* Limited actions
* L3/12 forwarding
* Encapsulation

Dimensions of SDN Environments:
Controller Types

Modular Controllers High Level Controllers
* Application code manipulates forwarding * Application code specifies declarative policies
rules * E.g. Frenetic, McNettle

* E.g. OpenDaylight, Floodlight
* Application code is verifiable

 Written in imperative Ianguages * Amendable to formal verification

* Java, C++, Python
e Written in functional languages

* Dominant controller style Nettle, OCamal

Ecosystem : BigSwitch

* Controller Type BIG SWITCH
. CENTRALIZED SDN
* Modular: Floodlight SOLUTIONS
e Southbound API: I
O pe n FIOW BSN OPENFLOW AGENT

* OpenFlow 1.3

1 BSNASIC DRIVER) F BSN VSWITCH DRlVER--"-é
* SDN Device: Whitebox I LINUX USER SPACE MODULES === I

b (N d IgO) ll BrOADCOM SDK ONL KERNEL DEVICE DRIVERS LINUX KERNEL OPEN VSWITCH (OVS)

e SDNF | avor SWITCH LIGHT 0S SWITCH LIGHT vSWITCH
FOR FOR
° U nderlay+Ove r|ay BARE METAL SWITCHES HYPERVISORS

Ecosystem : Juniper

Controller Type
 Modular: OpenContrail

Southbound API: XMPP/
NetConf

* BGP+MPLS

SDN Device: Vertical Stack

* Propriety Junos
SDN Flavor
* Overlay

Figure 5: Internal Structure of a Control Node

SDN EcoSystem

Arista Broadcom Cisco

OF + proprietary OF + proprietary OF + proprietary

Underlay Underlay Underlay+Overlay
Vertical Stack Vertical Stack Vertical Stack
HP Dell FloodLight HP
OF OF OF OF
Underlay Underlay Underlay+Overlay Underlay
Vertical Stack Vertical Stack Whitebox Vertical Stack
Juniper Alcatel
BGP+NetConf BGP

Overlay
Vertical Stack

Overlay
Vertical Stack

|
|

OpenFlow

® Developed in Stanford
o Standardized by Open Networking Foundation (ONF)

O Current Version 1.4
m Version implemented by switch vendors: 1.3

e Allows control of underlay + overlay
o Overlay switches: OpenVSwitch/Indigo-light

SDN vs OpenFlow

® Leading SDN protocol

® Decouples control and data plane by giving a controller the
ability to install flow rules on switches(Bare Metal)

e Hardware or software switches can use OpenFlow

® Spec driven by ONF

How SDN Works: OpenFlow

I
4

OpenFlow: Anatomy of a Flow Table
Entry

Matc Actio Counte Priorit Time-
h n r : y out

I:Zntr‘y'

What order to process the
—rute

of Packet/Bytes processed by the rule

1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
3. Send to normal processing pipeline

4. Modify Fields

SWitch| vLAN | VLAN| MAC | MAcC | Eth I3 IP P |Ip L4 L4
Port | ID pcp | src dst type [Src | Dst | ToS | Prot [sport | dport

L4

Examples

Switching

Switch MAC |MAC [Eth VLAN |IP IP IP TCP [TCP Action

Port [src dst fype [D Src Dst Prot [sport [dport

* * 00:1f... * * * * * * * port6
Flow Switching

Switch MAC |MAC [Eth VLAN |IP IP IP TCP [TCP Action

Port rc dst type (D Src Dst Prot |[sport dport

port3 00:20.. 00:1f.. 0800 vlanl 1.2.3.45.6.7.8 4 17264 80 port6
Firewall

Switch MAC |MAC [Eth VLAN |IP IP IP TCP [TCP Action

Port [src dst fype [D Src Dst Prot [sport [dport

k * %k * *k k *k k % 22 drop

37

Examples

Routing
Switch MAC [MAC [Eth VLAN |IP IP IP TCP |TCP Action
Port [src dst fype [D Src Dst Prot [sport [dport
* * K * * * 5.6.7.8 * * * port6
VLAN
Switching
Switch MAC [MAC [Eth VLAN |IP IP IP TCP |TCP Action
Port [src dst fype [D Src Dst Prot [sport [dport
port6,
* * 00:1f.. * vlanl = * * * * port7,

port9

38

OpenFlow: How it works

OpenFlow Controller

OpenFlow Protocol (SSL/

Control Path ||OpenFlow

Data Path (Hardware)

OpenFlow: Anatomy of a Flow Table
Entry

~
o Controller PC
o | |OpenFlow Client ‘
ayer .
IIIIIIII FI;WI-raglel | | | | | | | | | | | | g
MAC |MAC |IP IP TCP [TCP Acti —
Hardwar | B¢ dst Src Dst sport [dport ction
e * * * 5.6.7.8 * & port 1

Layer

5.6.7.8 1.2.3.4 0

SDN Components : Hardwares

OpenFlow Compliant (1.0-1.4) Switch
eHP 8200 ZL, 6600, 6200ZL
eBrocade 5400ZL, 3500

o|BM Netlron

eJuniper OCX1100

e Baremetal Switch

e OpenVSwitch

SDN Components : Controllers

e OpenFlow Compliant (1.0-1.4) Controller

® POX: (Python) Pox as a general SDN controller that supports
OpenFlow. It has a high-level SDN API including a queriable
topology graph and support for virtualization.

® |RIS: (Java) a Resursive SDN Openflow Controller created by
IRIS Research Team of ETRI.

e MUL: (C) Mul, is an openflow (SDN) controller.
e NOX: (C++/Python) NOX was the first OpenFlow controller.

SDN Components : Controllers (Contd)

® Jaxon: (Java) Jaxon is a NOX-dependent Java-based
OpenFlow Controller.

® Trema: (C/Ruby) Trema is a full-stack framework for
developing OpenFlow controllers in Ruby and C.

® Beacon: (Java) Beacon is a Java-based controller that
supports both event-based and threaded operation.

e ovs-controller (C) Trivial reference controller packaged with
Open vSwitch.

SDN Components : Controllers (Contd)

e Floodlight: (Java) The Floodlight controller is Java-based
OpenFlow Controller. It was forked from the Beacon

controller, originally developed by David Erickson at
Stanford.

® Maestro: (Java) Maestro is an OpenFlow "operating system"
for orchestrating network control applications.

e NodeFlow (JavaScript) NodeFlow is an OpenFlow controller
written in pure JavaScript for Node.JS.

® NDDI - OESS: OESS is an application to configure and control
OpenFlow Enabled switches through a very simple and user
friendly User Interface.

® Ryu: (Python) Ryu is an open-sourced Network Operating

SDN Components : Controllers (Contd)

® NDDI - OESS: OESS is an application to configure and control
OpenFlow Enabled switches through a very simple and user
friendly User Interface.

® Ryu: (Python) Ryu is an open-sourced Network Operating
System (NOS) that supports OpenFlow.

Demonstration Lab

Objectives

® Basics of running Mininet in a virtual machine.

o Mininet facilitates creating and manipulating Software Defined Networking
components.

® Explore OpenFlow

oAn open interface for controlling the network elements through their
forwarding tables.

® Experience with the platforms and debugging tools most
useful for developing network control applications on
OpenFlow.

® Run the Ryu controller with a sample application

e Use various commands to gain experience with OpenFlow
control of OpenvSwitch

Objectives (Contd)

® Run the Ryu controller with a sample application

e Use various commands to gain experience with OpenFlow
control of OpenvSwitch

Topology

e Three hosts named h1, h2 and h3 respectively. Each host has an
Ethernet interface called hl-ethO, h2-ethO and h3-ethO
respectively.

e Three hosts are connected through a switch names s1. The switch
s1 has three ports named s1-ethl, sl-eth2 and s1-eth3.

e The controller is connected on the loopback interface (in real life
this may or may not be the case, it means the switch and

controller are built in a single box). The controller is identified as
c0 and connected through port 6633.

Topology Diagram

CO - Controller

OpenFlow

S1 Switch

S1-eth2
S1-eth0

H1-h1l-ethO
H3 —h3-eth0

H2 — h2-eth0

RYU Openflow controller

Ensure that no other controller is present
root@mininet-vm:~# killall controller
controller: no process found
root@mininet-vm: ~#

Note that 'controller' is a simple OpenFlow reference controller
implementation in linux. We want to

ensure that this is not running before we start our own
controller.

RYU Openflow controller(Cont)

Clear all mininet components

root@mininet-vm:~# mn -c

*** Removing excess controllers/ofprotocols/ofdatapaths/pings/noxes
killall controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-openflowd
ovs-controller udpbwtest mnexec ivs 2> /dev/null

killall -9 controller ofprotocol ofdatapath ping nox core lt-nox core ovsopenflowd
ovs-controller udpbwtest mnexec ivs 2> /dev/null

pkill -9 -f "sudo mnexec"

*** Removing junk from /tmp

rm -f /tmp/vconn* /tmp/vlogs* /tmp/*.out /tmp/*.log

*** Removing old X11 tunnels

*** Removing excess kernel datapaths

ps ax | egrep -o 'dp[0-9]+' | sed 's/dp/nl:/'

*** Removing OVS datapathsovs-vsctl --timeout=1 list-br

ovs-vsctl del-br sl

ovs-vsctl del-br s2

ovs-vsctl del-br s3

ovs-vsctl del-br s4

*** Removing all links of the pattern foo-ethX

ip link show | egrep -o ' (\w+-eth\w+)'

*** Cleanup complete.

root@mininet-vm:~#

RYU Openflow controller(Cont)

Start the Ryu controller

root@mininet-vm:~# ryu-manager --verbose ./simple switch 13.py
loading app ./simple switch 13.py

loading app ryu.controller.ofp handler

instantiating app ./simple switch 13.py of SimpleSwitchl3
instantiating app ryu.controller.ofp handler of OFPHandler
BRICK SimpleSwitchl3

CONSUMES EventOFPSwitchFeatures

CONSUMES EventOFPPacketIn

BRICK ofp_event

PROVIDES EventOFPSwitchFeatures TO {'SimpleSwitchl3': set(['config'])}
PROVIDES EventOFPPacketIn TO {'SimpleSwitchl3': set(['main'])}
CONSUMES EventOFPHello

CONSUMES EventOFPErrorMsg

CONSUMES EventOFPEchoRequest

CONSUMES EventOFPPortDescStatsReply

CONSUMES EventOFPSwitchFeatures

Understanding simple_switch.py

MiniNet Environment

root@mininet-vm:~# mn --topo=tree,1l,3 --mac --controller=remote --switch
ovsk,protocols=OpenFlowl3
*** Creating network

*** Adding controller

*** Adding hosts:

hl h2 h3

*** Adding switches:

sl

*** Adding links:

(hl, sl1l) (h2, sl) (h3, sl)
*** Configuring hosts

hl h2 h3

*** Starting controller
*** Starting 1 switches
sl

*** Starting CLI:

mininet>

MiniNet Environment(Cont)

Monitor controller to ensure that the switch connects

connected socket:<eventlet.greenio.GreenSocket object at 0xa986cOc>
address: ('127.0.0.1"', 42733)

connected socket:<eventlet.greenio.GreenSocket object at 0xa986cec>
address: ('127.0.0.1"', 42734)

hello ev <ryu.controller.ofp event.EventOFPHello object at 0xa9897ac>
move onto config mode

EVENT ofp event->SimpleSwitchl3 EventOFPSwitchFeatures

switch features ev version: 0x4 msg type 0x6 xid 0xbl5cb575

OFPSwitchFeatures (auxiliary id=0,capabilities=71,datapath id=1,n buffers
=256,n tables=254)

move onto main mode

MiniNet Environment(Cont)

Dump flows on switch sl

mininet> dpctl dump-flows -O OpenFlowl3

* % % Sl ___
OFPST FLOW reply (OF1.3) (x1id=0x2):

cookie=0x0, duration=2.481ls, table=0,
n packets=0, n bytes=0, priority=0

actions=FLOOD, CONTROLLER: 64

mininet>

MiniNet Environment(Cont)

Passing Packets

mininet> hl ping h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp reg=1 ttl=64 time=5.10 ms
64 bytes from 10.0.0.2: icmp reg=2 ttl=64 time=0.238 ms
64 bytes from 10.0.0.2: icmp reg=3 ttl=64 time=0.052 ms
64 bytes from 10.0.0.2: icmp reg=4 ttl=64 time=0.051 ms
~C

---10.0.0.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3001ms
rtt min/avg/max/mdev = 0.051/1.360/5.100/2.160 ms

mininet>

MiniNet Environment(Cont)

Passing Packets

mininet> hl ping h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp reg=1 ttl=64 time=5.10 ms
64 bytes from 10.0.0.2: icmp reg=2 ttl=64 time=0.238 ms
64 bytes from 10.0.0.2: icmp reg=3 ttl=64 time=0.052 ms
64 bytes from 10.0.0.2: icmp reqg=4 ttl=64 time=0.051 ms
~C

-—--10.0.0.2 ping statistics —---

4 packets transmitted, 4 received, 0% packet loss, time 3001ms
rtt min/avg/max/mdev = 0.051/1.360/5.100/2.160 ms

mininet>

Controller Environment

Monitor new messages in the controller window

EVENT ofp event->SimpleSwitchl3 EventOFPPacketIn

EVENT ofp event->SimpleSwitchl3 EventOFPPacketlIn

packet in from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 on dpid 1

associate 00:00:00:00:00:01 with port 1 on dpid 1

packet in from 00:00:00:00:00:02 port 2 to 00:00:00:00:00:01 on dpid 1

associate 00:00:00:00:00:02 with port 2 on dpid 1

add unicast flow from 00:00:00:00:00:02 port 2 to 00:00:00:00:00:01 port 1 on dpid 1
EVENT ofp event->SimpleSwitchl3 EventOFPPacketIn

packet in from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 on dpid 1

add unicast flow from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 port 2 on dpid 1

Mininet Environment

Dump flows again to view differences

mininet> dpctl dump-flows -O OpenFlowl3

OFPST FLOW reply (OF1.3)

cookie=0x0, duration=38
actions=ALL

cookie=0x0, duration=37.

actions=output:2

cookie=0x0, duration=38
actions=ALL

cookie=0x0, duration=38.

actions=output:1l

cookie=0x0, duration=38

cookie=0x0, duration=38.

cookie=0x0, duration=38.

:00:00:00 actions=ALL

cookie=0x0, duration=38.

:00:00:00 actions=ALL

cookie=0x0, duration=73.

.044s,

044s,

.043s,

043s,

.043s,

043s,

043s,

044s,

001s,

(x1d=0x2) :

table=0,

table=0,

table=0,

table=0,

table=0,

table=0,

table=0,

table=0,

table=0,

n_packets=0,

n_packets=3,

n_packets=0,

n_packets=4,
n_packets=0,
n_packets=0,
n_packets=0,

n_packets=0,

n_packets=3,

n_bytes=0, priority=10,in port=1,dl src=00:00:00:00:00:01,dl dst=ff:ff:ff:ff:ff:ff

n_bytes=238, priority=100,in port=1,dl src=00:00:00:00:00:01,d1 dst=00:00:00:00:00:02

n_bytes=0, priority=10,in port=2,dl src=00:00:00:00:00:02,d1l dst=ff:ff:ff:ff:ff:ff

n_bytes=336, priority=100,in port=2,dl src=00:00:00:00:00:02,d1 dst=00:00:00:00:00:01
n_bytes=0, priority=5,in_port=2,dl_src=00:00:00:00:00:02,dl_type=0x88cc actions=drop
n_bytes=0, priority=5,in port=1,dl src=00:00:00:00:00:01,dl_ type=0x88cc actions=drop
n bytes=0, priority=10,in port=2,dl src=00:00:00:00:00:02,dl dst=01:00:00:00:00:00/01

n bytes=0, priority=10,in port=1,dl src=00:00:00:00:00:01,dl dst=01:00:00:00:00:00/01

n_bytes=294, priority=0 actions=FLOOD,CONTROLLER:64

:00:00

:00:00

Mininet Environment

Running a high bandwidth flow
mininet> 1perf

***% Tperf: testing TCP bandwidth between
hl and hZ2

Waiting for 1iperf to start up...***
Results: ['5.52 Gbits/sec', '5.52 Gbits/
sec']

mininet>

Mininet Environment

Dump flows to see the flows which match

mininet> dpctl dump-flows -0 OpenFlowl3
OFPST FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=209.485s, table=0, n packets=2384026, n bytes=3609389036,
priority=100,1in port=1,dl src=00:00:00:00:00:01,dl dst=00:00:00:00:00:0a actions=output:10

cookie=0x0, duration=209.485s, table=0, n packets=27163, n bytes=1792770,
priority=100,in port=10,dl src=00:00:00:00:00:0a,dl dst=00:00:00:00:00:01 actions=output:1

cookie=0x0, duration=392.419s, table=0, n packets=150, n bytes=11868, priority=0
actions=FLOOD, CONTROLLER:6

Refereces

1. Mininet/Openflow Tutorials — Dean Pemberton
2. SDN —The Next Wave of Networking — Siva Valiappan

Questions

