RPSL with IRRToolSet

Muhammad Moinur Rahman
IRR Toolset, RPSL: Introduction

- **Tutorial**
 - Do not think of bypassing the RFC

- **Target audience**
 - Knowledge of Internet Routing (specially BGP)
 - Familiar with any IRR Database
 - No need to know Internet Routing Registry

- **Layout**
 - Theory
 - Handson Lab using IRR Power Tools, Net:IRR, rpsltools and IRRToolSet
Historical Context

- The basic concept of routing registries dates back to the 1980's and NSFNet
- A high-level policy based routing database (PRDB) was used to generate configs
- NSFNet regional networks were required to submit Network Announcement Change Requests (NACR) to update the PRDB
- NACR’s documented connected networks and their Autonomous System numbers
Historical Context (Early European Works)

- RIPE – Réseaux IP Europeens
- Formed in 1989 to coordinate and promote IP networking in Europe
- Developed a registry for allocation of IP addresses and Autonomous System numbers in Europe (first RIR)
- No routing policy support initially
Historical Context (RIPE)

- RIPE-81 document was published in Feb, 1993 - extended the RIPE address registry to include basic routing policy information
- Added ability to specify an Autonomous System number for an IP address allocation
- Also allowed the expression of Autonomous System relationships
Historical Context (RIPE-181)

- RIPE-181 (RIPE-81++) document was published in Oct, 1994
- Introduced concept of object classes
- Separated routing policy information from IP address allocation information with introduction of the “route” object
- Extended Autonomous System policy expression functionality
- Also adopted a mechanism for grouping Autonomous Systems with the “as-macro”
Historical Context (RPSL)

- In March 1995, the RIPE-181 standard was accepted as an IETF informational document – RFC-1786
- IETF created the Routing Policy System Working Group to revise and standardize the language under the auspices of the IETF
- Result was known as the Routing Policy Specification Language (RPSL)
Historical Context (RFC-2622)

- RFC 2622 was released in June, 1999 and formally defined RPSL standard
- Based on the RIPE-181 standard
 - Significantly extended the functionality of the aut-num object
 - route object also extended
 - as-macro became as-set object
 - Added a number of new object types
 - Included a dictionary based extension mechanism
Historical Context (RFC-2622 New Objects)

- as-set
- route-set
- filter-set
- rtr-set
- peering-set
- inet-rtr
- mntner, role, and person objects for authentication and contact information
Historical Context (RFC-4012 RPSLng)

- IPv6 and multicast support
- Address Family Identifier (afi i.e, ipv4 and ipv6)
- MPBGP added in protocol Dictionary
- RPSL types ipv6-address, ipv6-address-prefix and ipv6-address-prefix-range added
- Policy Attribute mp-import, mp-export and mp-default added
- Class route6 added
- route-set class now supports both IPv4 and IPv6 mp-members
- peering-set supports mp-peering attribute
- rtr-set class supports both IPv4 and IPv6
Routing Policy Specification Language (RPSL)

- Object-based language
 - route, autonomous system, router, contact and set objects
- Defines the syntax, semantics and format of data in IRR
- Vendor independent
- Extensible
- IETF Proposed Standard (RFC2622) later superseded by RPSLng (RFC4012)
- Based on RIPE-181 (RFC 1786)
RPSL Basics

● Each object type (class) contains mandatory and optional attributes

● All objects must have these attributes
 o mnt-by: identifies mntner object that controls the object
 o changed: lists email and time of change
 o source: identifies the registry name where the object is located
mntner Object

- Mntner is an abbreviation of maintainer
- Identifies accounts in the registry
- Maintainer objects used for authentication
- Specifies authentication mechanism in the “auth” attribute
 - CRYPT-PW or MD5-PW - password auth
 - PGP-KEY – PGP/GPG based auth
 - MAIL-FROM – email based auth
 - NONE
mntner Object

mntner: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
admin-c: [mandatory] [multiple] [inverse key]
tech-c: [optional] [multiple] [inverse key]
upd-to: [mandatory] [multiple] [inverse key]
mnt-nfy: [optional] [multiple] [inverse key]
auth: [mandatory] [multiple]
remarks: [optional] [multiple]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]
mntner Object Example

mntner: MAINT-BD-1ASIAAHL
descr: 1Asia Alliance Communication Ltd
country: BD
admin-c: MMR13-AP
upd-to: hostmaster@1asia-ahl.com
mnt-by: MAINT-BD-1ASIAAHL
auth: # Filtered
referral-by: APNIC-HM
changed: moin@1asia-ahl.com 20121127
source: APNIC
route/route6 Object

- Defines a CIDR prefix and origin AS
- Most common type of object found in routing registries
- Used by a number of ISP's to generate filters on their customer BGP sessions
 - Customers must register all routes in order for their ISP to route them
 - Allows automation of adding new prefixes
route/route6 object and keys

- Every RPSL class has a primary “key”
- For most classes, it is simply the main class attribute value
- For example, the mntner class uses the mntner attribute value as the key
- However, route objects use both route and origin fields as the primary key
- There can be multiple objects for the same prefix with different origins
- This is by design
 - Multi-origin multi-homing
 - When changing to a new origin AS, want routes for both until switched
- However, also many cases of multiples due to stale routes not being cleaned
route/route6 Object Format

route: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
origin: [mandatory] [single] [primary/inverse key]
withdrawn: [optional] [single]
member-of: [optional] [single] [inverse key]
inject: [optional] [multiple]
components: [optional] [single]
aggr-bndry: [optional] [single] [inverse key]
aggr-mtd: [optional] [single]
export-comps: [optional] [single]
holes: [optional] [single]
remarks: [optional] [multiple]
cross-nfy: [optional] [multiple] [inverse key]
cross-mnt: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]
route/route6 Object Example

route: 182.16.140.0/22
descr: 1Asia Communication Pte Ltd
origin: AS10102
mnt-lower: MAINT-BD-1ASIAAHL
mnt-routes: MAINT-BD-1ASIAAHL
mnt-by: MAINT-BD-1ASIAAHL
changed: moin@1asia-ahl.com 20121209
source: APNIC
aut-num Object

- Defines routing policy for an AS
- Uses mp-import: and mp-export: attributes to specify policy
- Can be used for highly detailed policy descriptions and automated config generation
- Can reference other registry objects such as
 - as-sets
 - route-sets
 - filter-sets
aut-num Object Format

aut-num: [mandatory] [single] [primary/look-up key]
as-name: [mandatory] [single]
descr: [mandatory] [multiple]
member-of: [optional] [single] [inverse key]
import: [optional] [multiple] [inverse key]
export: [optional] [multiple] [inverse key]
default: [optional] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
technical-c: [mandatory] [multiple] [inverse key]
remarks: [optional] [multiple]
cross-notification: [optional] [multiple] [inverse key]
cross-maintenance: [optional] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
maintenance-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]
aut-num Object Example

aut-num: \ AS10102 \\
as-name: \ SG-1ASIACOM-AS-AP \\
descr: \ 1Asia Communication Pte Ltd \\
descr: \ 151 Chin Swee Road \\
descr: \ 14-01 Manhattan House \\
country: \ SG \\
admin-c: \ SHC12-AP \\
tech-c: \ MMR13-AP \\
mnt-by: \ MAINT-SG-1ASIACOM-SG \\
mnt-routes: MAINT-SG-1ASIACOM-SG \\
mnt-irt: \ IRT-SG-1ASIACOM-SG \\
changed: \ hm-changed@apnic.net 20100428 \\
changed: \ hm-changed@apnic.net 20121116 \\
source: \ APNIC
as-set Object

• Provides a way of grouping AS'es
• Name must begin with prefix “AS-” or in the format
 o AS<NUM>:AS-CUSTOMERS
 o AS<NUM>:AS-PEERS
• Frequently used to list downstream/customer AS numbers
• Maybe referenced in aut-num import/export policy expressions
• Can reference other as-set's
route-set Object

- Defines a set of routes prefixes
- Name must begin with prefix “RS-” or in the format ASNUM:RS-<ORGANIZATION>
- Can reference other route-sets
- Can also reference AS's or as-set's
 - In this case, the route-set will include all route object prefixes which have an origin which matches the AS numbers
route-set Object Format

route-set: [mandatory] [single] [primary/look-up key]
descr: [mandatory] [multiple]
members: [optional] [single]
mbrs-by-ref: [optional] [single]
remarks: [optional] [multiple]
tech-c: [mandatory] [multiple] [inverse key]
admin-c: [mandatory] [multiple] [inverse key]
notify: [optional] [multiple] [inverse key]
mnt-by: [mandatory] [multiple] [inverse key]
changed: [mandatory] [multiple]
source: [mandatory] [single]
route-set Object Example

route-set: AS10102:RS-1ASIA

descr: Routes announced across Peers

members:
 103.4.108.0/22, 182.16.140.0/22

technical-contact: MMR13-AP

administrative-contact: MMR13-AP

mnt-by: MAINT-BD-1ASIAAHL

changed: moin@1asia-ahl.com 20140129

source: APNIC
filter-set Object

- Defines a set of routes that are matched by a filter expression
- Similar in concept to route-set's
- Name must begin with prefix “fltr-”
The IRR(internet Routing Registry)

- Concept of “the” Internet Routing Registry system established in 1995
- Shares information regarding production Internet Routing Registries
- Web site at http://www.irr.net
- Initially RIPE-181 format, shifted to RPSL
- Mirror Routing Registry data in a common repository for simplified queries
- The IRR currently consists of roughly 35 operational registries
- Registries operators
 - Regional Internet Registers (RIR’s), such as ARIN, RIPE, and APNIC
 - ISP’s - SAVVIS, NTT, Level3
 - Non-affiliated public registries – RADB and ALTDB
The RADB launched in 1995 as part of NSFNet funded Routing Arbiter project.

The Routing Arbiter project was intended to ease transition from the NSFNet to the commercial Internet.

Registry was used to configure Route Servers located at designated Network Access Points (NAP’s) located in Chicago, Washington, New York, and San Francisco.

RADB transitioned from public NSFNet funding to fee-based model in 1999.

The registry can be queried at website and via whois at whois.radb.net

This server also mirrors the other registries in the IRR as documented at www.irr.net

RADB Routing Registry
Why Register?

- Document routing policy
- In particular, register route objects to associate network prefixes with origin AS
- A number of transit providers require their customers to register routes and filter customer route announcements based on registry contents
- Filters unauthorized announcements to prevent route hijacking, denial of service
Incidents

- BGP->RIP->BGP injection
- 128/7 leak
- bogon 0/0, 10/8 leaks
- Daily, someone is leaking somelse’s prefix.
Common IRR query flags

- IRR's support a number flag options
- -i flag performs inverse query
 - “-i origin AS10102” returns all route objects with an origin of AS10102
 - “-i mnt-by MAINT-AS10102” returns all routes maintained by MAINT-AS10102
- -M flag returns more specific route objects for a prefix
 - “-M 27.0.8.0/22” returns all more specific route objects in the 27.0.8.0/22 prefix
- -s flag limits number of sources queried
 - May not want to query all 30+ IRR db's
 - example, “-s RADB,RIPE”
- -K flag – return primary keys only
 - Useful for route object queries, excludes extraneous fields not needed for policy
 - Often used by tools
Advanced IRR queries

- IRRd provides the ability to perform server side set expansions (as-set and route-set)
- This is done with the “!i” query
 - “!iAS-ESNETUS” returns members of ASESNETUS as-set object
- Add a “,1” for a recursive expansions
 - “!iAS-ESNETUS,1” will recurse any as-set members and return individual as-members
 - Reduces number of queries to server
Advanced RPSL – aut-num

- The aut-num object can be used to express an Autonomous System’s routing policy and peering information.
- Powerful structured syntax allows for complex policy expressions.
- Some operators drive their network configuration off of their RPSL data.
- Others simply use it to document AS relationships in a public manner.
RPSL Tools

● Several tools have been developed to facilitate the use of RPSL registry data in the configuration of networks
● Tools range from sophisticated and powerful to simple and limited
● Use the IRR by querying over the whois protocol
● Some ISP’s use in-house developed tools which process RPSL database files directly
Tools of trade for RPSL

- IRRToolSet
- NET::IRR
 - Perl module supporting basic IRR queries
- IRR Power Tools
 - IRR based router configuration – PHP + CVS
- Rpsltool – generates cisco configs - Perl
Tools of trade for RPSL

- **IRRToolSet**
- **NET::IRR**
 - Perl module supporting basic IRR queries
- **IRR Power Tools**
 - IRR based router configuration – PHP + CVS
- **Rpsltool** – generates cisco configs - Perl
IRRToolSet

- Based on original RAToolSet used in NSF Routing Arbiter project
- Written in C++ and now maintainer by ISC
- rtconfig tool uses templates to generate router configs from IRR data
- Other provided tools include
 - peval – low level policy evaluation tools
 - rpslcheck – verifies RPSL syntax of objects
- Death of IRRToolSet??
- Revamped by ISC, yet complex to configure
Net::IRR

● Perl CPAN module
● Provide several useful Perl functions
 ○ get_routes_by_origin
 ○ get_ipv6_routes_by_origin
 ○ get_as_set
 ○ get_route_set
 ○ route_search
IRR Power Tools

- PHP based toolset
 - http://sourceforge.net/projects/irrpt
- Allows ISP to easily track, manage and utilize IRR data
- Performs tracking with CVS
- Can email notifications of updates
- irrpt_pfxgen script can generate router configs in Cisco/Foundry, Juniper, Extreme, and Force10 formats
Routing Registry Futures

- RPKI (Resource Public Key Infrastructure) work will likely have impact on routing registry usage
- APNIC along with RIPE has already designed the portal for RPKI usage
- Latest subset of IRRToolSet has added support for integrating RPKI along with RPSL
• Feeling sorry for being here .. 😞
 • Don’t be ..
 • Configuration part will make you think life is really easy .. 😊

Lets go for a Tea Break
IRR Toolset, RPSL: Installation

● Available in most Unix/Linux like OS
● Basic Requirements for IRRToolset are as of following
 o GNU Make
 o GCC
 o flex
 o bison
 o libtool
● Additional tools for autoconfiguration are as of following:
 o expect
 o cron
IRR Toolset, RPSL: Installation – Get Source

root@bofh:~ # wget ftp://ftp.isc.org/isc/IRRToolSet/IRRToolSet-5.0.1/irrtoolset-5.0.1.tar.gz
root@bofh:~ # tar -zxvf irrtoolset-5.0.1.tar.gz
root@bofh:~ # cd irrtoolset-5.0.1
IRR Toolset, RPSL: Installation – Build and Install

root@bofh:~irrtoolset-5.0.1# ./configure
root@bofh:~irrtoolset-5.0.1# make
root@bofh:~irrtoolset-5.0.1# make install
IRR Toolset, RPSL: RPSL Primer

root@bofh:~ whois -h whois.apnic.net AS131208
#####snipped#####
mp-import: afi any.unicast {
 from AS-ANY accept ANY AND NOT RS-MARTIANS;
} refine {
 from AS-ANY action pref = 50;
 accept community.contains(131208:50);
 from AS-ANY action pref = 30;
 accept community.contains(131208:70);
 from AS-ANY action pref = 10;
 accept community.contains(131208:90);
 from AS-ANY action pref = 0; accept ANY;
} refine afi ipv4.unicast {
IRR Toolset, RPSL: RPSL Primer (Contd)

from AS6453 66.110.0.126 at 103.4.109.254 action pref=10;
 community.append(131208:11000,131208:11010,131208:11011);
 accept ANY AND NOT RS-MARTIANS;
from AS58715 103.4.108.62 at 103.4.108.61 action
 community.append(131208:41000,131208:41010,131208:41011);
 accept AS-58715^24 AND <^AS58715+ AS-58715*>*;
 from AS58656 103.4.108.94 at 103.4.108.93 action
 community.append(131208:41000,131208:41010,131208:41011);
 accept AS-BDHUB^24 AND <^AS58656+ AS-BDHUB*>*;
from AS58657 103.4.108.178 at 103.4.108.177 action
 community.append(131208:41000,131208:41010,131208:41011);
 accept AS58657^24 AND <^AS58657+>
from AS15169 27.0.9.10 at 27.0.9.9 action pref=5;
 community.append(131208:31000,131208:31020,131208:31021);
 accept AS15169^24 AND <^AS15169+ AS-GOOGLE*>;
} refine afi ipv6.unicast {
IRR Toolset, RPSL: RPSL Primer (Contd)

from AS6453 2001:5a0:2300:100::55 at 2001:5a0:2300:100::56 action pref=10;
 community.append(131208:11000,131208:11010,131208:11011); accept ANY AND NOT RS-MARTIANS;
from AS15169 2404:a100:2000::11 at 2404:a100:2000::12 action pref=5;
 community.append(131208:31000,131208:31020,131208:31021); accept AS15169 AND ^AS15169\+ AS-GOOGLE*$>;
}
IRR Toolset, RPSL: rtconfig Caveats

● Hard to debug as debug message has no clue to original error
● By default uses irrd whois server which none of the RIR’s uses except Merit RADB
● For using with APNIC, RIPE etc RIR’s whois server we must change the protocol to bird(Original RIPE whois daemon)
IRR Toolset, RPSL: rtconfig

- Prompt based shell application
- root@bofh:~# rtconfig -h whois.apnic.net -protocol bird

 rtconfig>
 Takes any of the following commands:
 @rtconfig import <ASN-1> <rtr-1> <ASN-2> <rtr-2>
 @rtconfig export <ASN-1> <rtr-1> <ASN-2> <rtr-2>
 @rtconfig configureRouter <inet-rtr-name>
 @rtconfig importGroup <ASN-1> <peering-set-name>
 @rtconfig exportGroup <ASN-1> <peering-set-name>
 @rtconfig static2bgp <ASN-1> <rtr-1>
 @rtconfig set sources = <source-list>
 @rtconfig access_list filter <filter>
 @rtconfig aspath_access_list filter <filter>
 @rtconfig printPrefixes <format> filter <filter>
IRR Toolset, RPSL: rtconfig(Contd)

@rtconfig printPrefixRanges <format> filter <filter>
@rtconfig printSuperPrefixRanges <format> filter <filter>
IRR Toolset, RPSL: rtconfig(Contd)

Cisco Specific
@rtconfig set cisco_map_name = <map-name>
@rtconfig set cisco_map_first_no = <no>
@rtconfig set cisco_map_increment_by = <no>
@rtconfig set cisco_prefix_acl_no = <no>
@rtconfig set cisco_aspath_acl_no = <no>
@rtconfig set cisco_pktfilter_acl_no = <no>
@rtconfig set cisco_community_acl_no = <no>
@rtconfig set cisco_access_list_no = <no>
@rtconfig set cisco_max_preference = <no>
@rtconfig networks <ASN-1>
@rtconfig inbound_pkt_filter <if-name> <ASN-1> <rtr-1> <ASN-2> <rtr-2>
IRR Toolset, RPSL: rtconfig(Contd)

@rtconfig pkt_filter <if-name> <ASN-1> <rtr-1> <ASN-2> <rtr-2>
@rtconfig outbound_pkt_filter <if-name> <ASN-1> <rtr-1> <ASN-2> <rtr-2>
IRR Toolset, RPSL: rtconfig(Contd)

Junos Specific
@rtconfig set junos_policy_name = <policy-name>
@rtconfig networks <ASN-1>
router bgp 131208
 neighbor 103.4.108.54 remote-as 58682
 neighbor 103.4.108.54 version 4
!
Earth Communication Ltd
@RtConfig set cisco_access_list_no = 500
@RtConfig set cisco_map_name = "AS58715-IN"
@RtConfig import AS131208 103.4.108.62 AS58715 103.4.108.61
@RtConfig set cisco_access_list_no = 599
@RtConfig set cisco_map_name = "ANY"
@RtConfig export AS131208 103.4.108.62 AS58715 103.4.108.61
!
BDHub Ltd
@RtConfig set cisco_access_list_no = 501
@RtConfig set cisco_map_name = "AS58656-IN"
@RtConfig import AS131208 103.4.108.94 AS58656 103.4.108.93
@RtConfig set cisco_access_list_no = 599
@RtConfig set cisco_map_name = "ANY"
@RtConfig export AS131208 103.4.108.94 AS58656 103.4.108.93
!
end
IRR Toolset, RPSL: rtconfig Input File (Output)

Live Demonstration. Output is attached as Provision1.txt
IRR Toolset, RPSL: Daily Changes

• For automated processing we concentrate on:
 o AS-SET

• Changes in AS-SET requires the following configuration changes:
 o Prefix-list
 o AS-PATH access list
IRR Toolset, RPSL: rtconfig Input File(Changes)

Earth Communication Ltd
@RtConfig set cisco_access_list_no = 500
@RtConfig aspath_access_list filter <^AS58715+ AS-58715*$>
@RtConfig access_list filter AS-58715

BDHub Ltd
@RtConfig set cisco_access_list_no = 501
@RtConfig aspath_access_list filter <^AS58656+ AS-BDHUB*$>
@RtConfig access_list filter AS-BDHUB
end
IRR Toolset, RPSL: rtconfig Input File (Output)

Live Demonstration. Output is attached as changes1.txt.
Various ways to upload configuration:

- SNMP Write
- NETCONF XML Based
- Automated Script using expect
IRR Toolset, RPSL: SNMP Write

Cons

● Secured only while SNMPv3 is used
● Uses UDP
● Long Running Process
● Non-Standard MIB
● Tough to integrate with rtconfig
IRR Toolset, RPSL: NETCONF

Cons

● Works good with so many routers
● Overkill for a small number of routers
● Needs detailed concept of XML and how it works
● Not for the faint hearted
● Need detailed idea of Yang too
IRR Toolset, RPSL: Expect

Expect is a tool for automating interactive applications such as telnet, ftp, passwd, fsck, rlogin, tip, etc.

Pros

● Good for automating tasks that prompts for information
● Easy to understand
● Used for automatic Testing

Cons

● Keeps login credentials inside script
● Wrong file permission can be fatal
IRR Toolset, RPSL: Script for Configuration

```
#!/usr/local/bin/expect
set timeout 500
set hostname "dhk-agg-rtr01.lasiacom.net"
set file [open changes1.txt r]
set username "rtconfig"
set password "yovHyWer@lijZashexyuefs7"

while {![eof $file]} {
    set buffer [read $file 10240000]
}
spawn ssh -2 -l $username $hostname

expect "assword:" {
    send "$password\n"
}
```
IRR Toolset, RPSL: Script for Configuration

```bash
expect "DHK-AGG-RTR01#" {
    send "conf t\n"
    expect "^(config)#" {
        foreach line [split $buffer "\n"] {
            send "$line\n"
        }
        expect "^(config)#" {
            send "commit\n"
            expect "^(config)#" {
                send "exit\n"
            }
        }
    }
}
expect "DHK-AGG-RTR01#" {
    send "exit\n"
}
close $spawn_id
```
IRR Toolset, RPSL: Further Reading

- RFC-2622: Routing Policy Specification Language
- RFC-2725: Routing Policy System Security
- RFC-2650: Using RPSL in Practice
- RFC-4012: Routing Policy Specification Language next generation (RPSLng)
- RFC-2726: PGP Authentication for RIPE Database Updates
- RFC-2769: Routing Policy System Replication
IRR Toolset, RPSL: Questions

Contact

person: Muhammad Moinur Rahman
address: The Alliance Building. (6th Floor),
address: 63 Pragati Sharani, Baridhara,
country: BD
phone: +8801977881132
e-mail: moin@1asia-ahl.com
nic-hdl: MMR13-AP
notify: moin@1asia-ahl.com
mnt-by: MAINT-BD-1ASIAAHL
changed: moin@1asia-ahl.com 20121128
source: APNIC