BGP Techniques for Network Operators

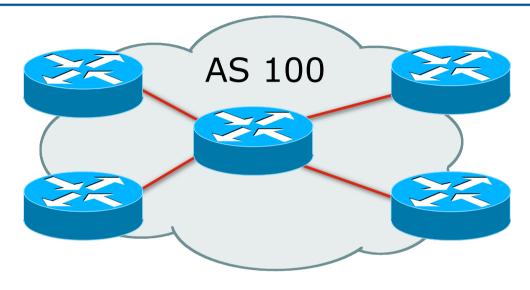
Philip Smith
<philip@nsrc.org>
SANOG 27
25th-27th January 2016
Kathmandu

Presentation Slides

- □ Will be available on
 - http://bgp4all.com/ftp/seminars/SANOG27-BGP-Techniques.pdf
 - And on the SANOG27 website
- Feel free to ask questions any time

BGP Techniques for Network Operators

- BGP Basics
- Scaling BGP
- Deploying BGP in an ISP network


BGP Basics

What is BGP?

Border Gateway Protocol

- A Routing Protocol used to exchange routing information between different networks
 - Exterior gateway protocol
- Described in RFC4271
 - RFC4276 gives an implementation report on BGP
 - RFC4277 describes operational experiences using BGP
- The Autonomous System is the cornerstone of BGP
 - It is used to uniquely identify networks with a common routing policy

Autonomous System (AS)

- Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control
- Identified by a unique 32-bit integer (ASN)

Autonomous System Number (ASN)

Two ranges

0-65535 (original 16-bit range)

65536-4294967295 (32-bit range – RFC6793)

Usage:

0 and 65535 (reserved)

1-64495 (public Internet)

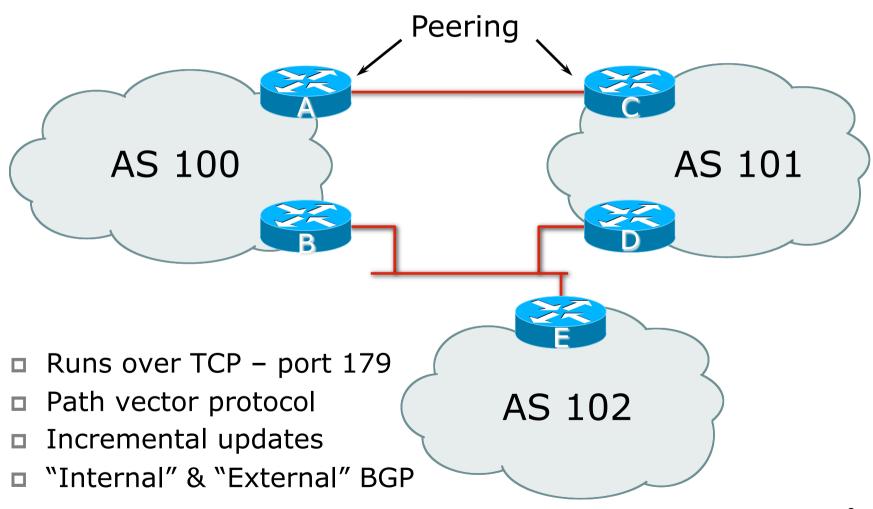
64496-64511 (documentation – RFC5398)

64512-65534 (private use only)

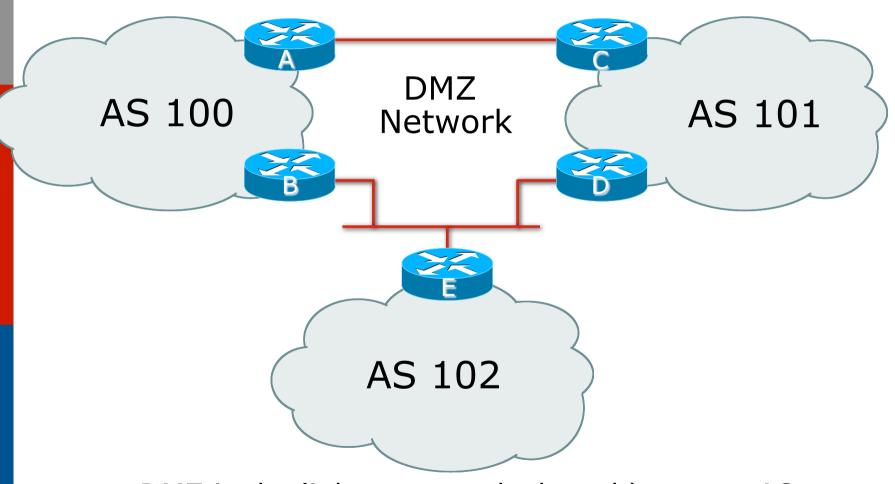
23456 (represent 32-bit range in 16-bit world)

65536-65551 (documentation – RFC5398)

65552-4199999999 (public Internet)


420000000-4294967295 (private use only - RFC6996)

- 32-bit range representation specified in RFC5396
 - Defines "asplain" (traditional format) as standard notation


Autonomous System Number (ASN)

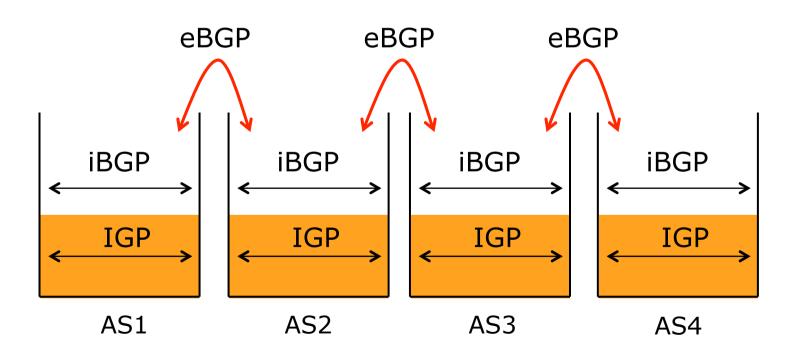
- ASNs are distributed by the Regional Internet Registries
 - They are also available from upstream ISPs who are members of one of the RIRs
- Current 16-bit ASN assignments up to 64297 have been made to the RIRs
 - Around 43000 16-bit ASNs are visible on the Internet
 - Around 200 left unassigned
- Each RIR has also received a block of 32-bit ASNs
 - Out of 12000 assignments, around 9200 are visible on the Internet
- See www.iana.org/assignments/as-numbers

BGP Basics

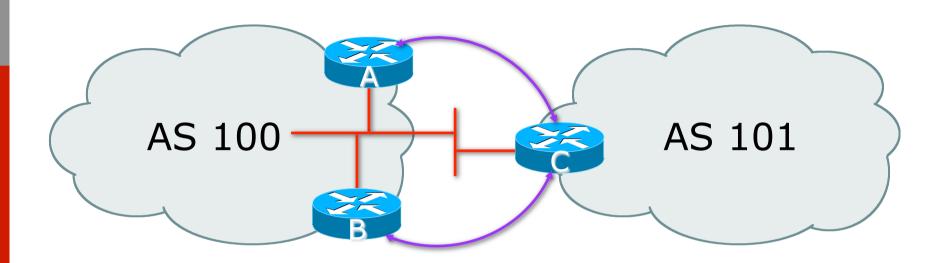
Demarcation Zone (DMZ)

DMZ is the link or network shared between ASes

BGP General Operation


- Learns multiple paths via internal and external BGP speakers
- Picks the best path and installs in the forwarding table
- Best path is sent to external BGP neighbours
- Policies are applied by influencing the best path selection

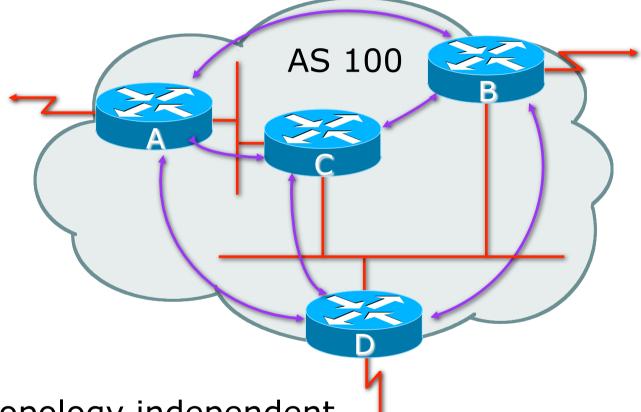
eBGP & iBGP


- BGP used internally (iBGP) and externally (eBGP)
- □ iBGP used to carry
 - Some/all Internet prefixes across ISP backbone
 - ISP's customer prefixes
- eBGP used to
 - Exchange prefixes with other ASes
 - Implement routing policy

BGP/IGP model used in ISP networks

Model representation

External BGP Peering (eBGP)



- Between BGP speakers in different AS
- Should be directly connected
- Never run an IGP between eBGP peers

Internal BGP (iBGP)

- BGP peer within the same AS
- Not required to be directly connected
 - IGP takes care of inter-BGP speaker connectivity
- iBGP speakers must to be fully meshed:
 - They originate connected networks
 - They pass on prefixes learned from outside the ASN
 - They do not pass on prefixes learned from other iBGP speakers

Internal BGP Peering (iBGP)

- Topology independent
- Each iBGP speaker must peer with every other iBGP speaker in the AS

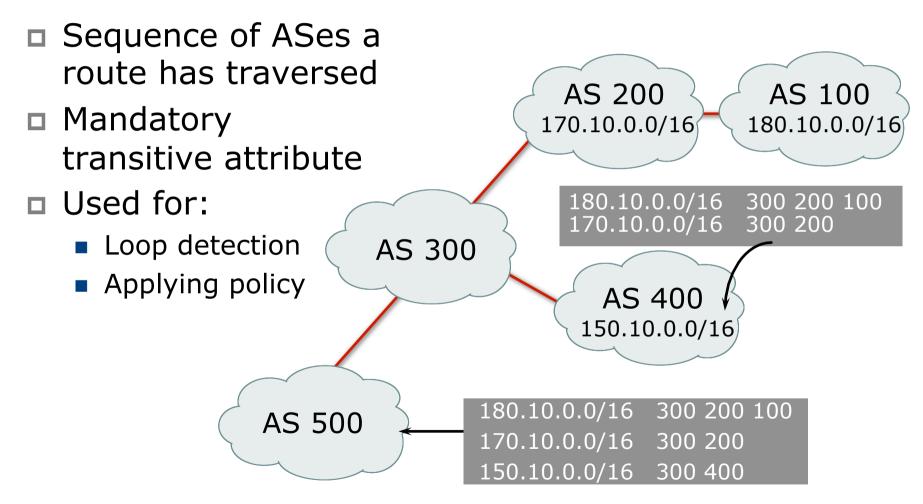
Peering between Loopback Interfaces

- Peer with loop-back interface
 - Loop-back interface does not go down ever!
- Do not want iBGP session to depend on state of a single interface or the physical topology
 17

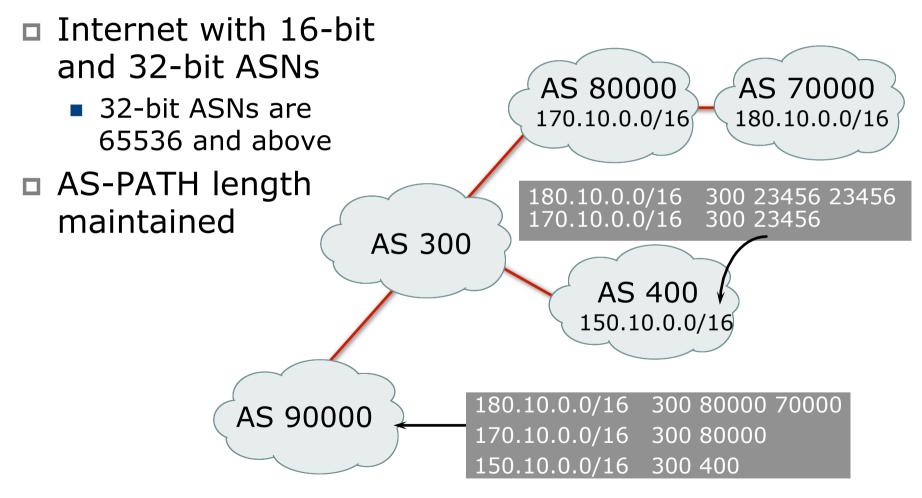
BGP Attributes

BGP's policy tool kit

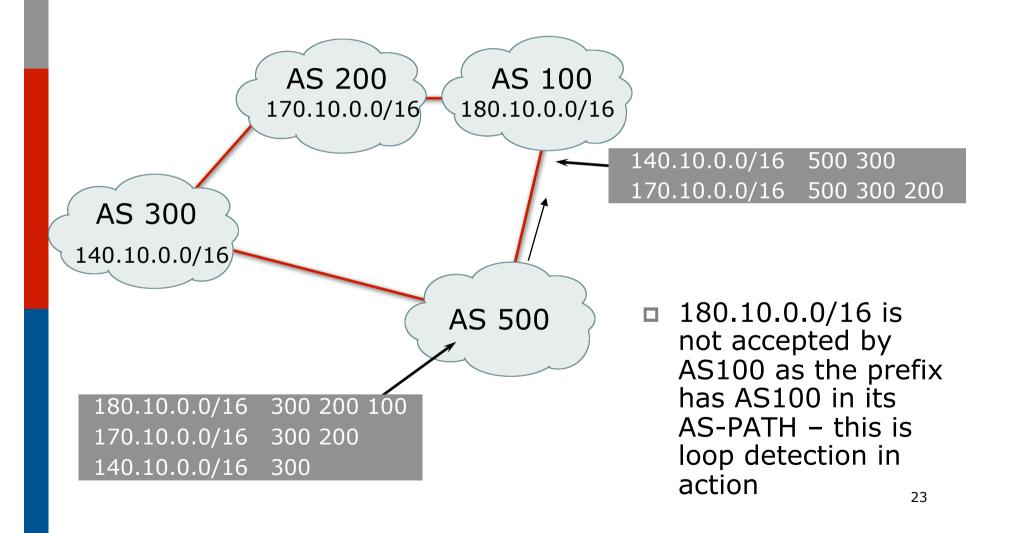
What Is an Attribute?

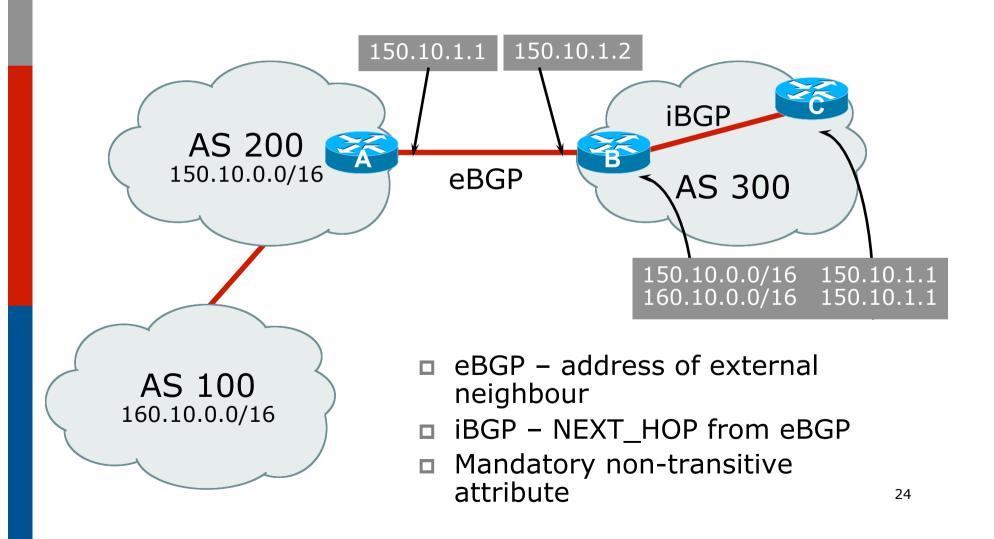

Next Hop AS Path MED

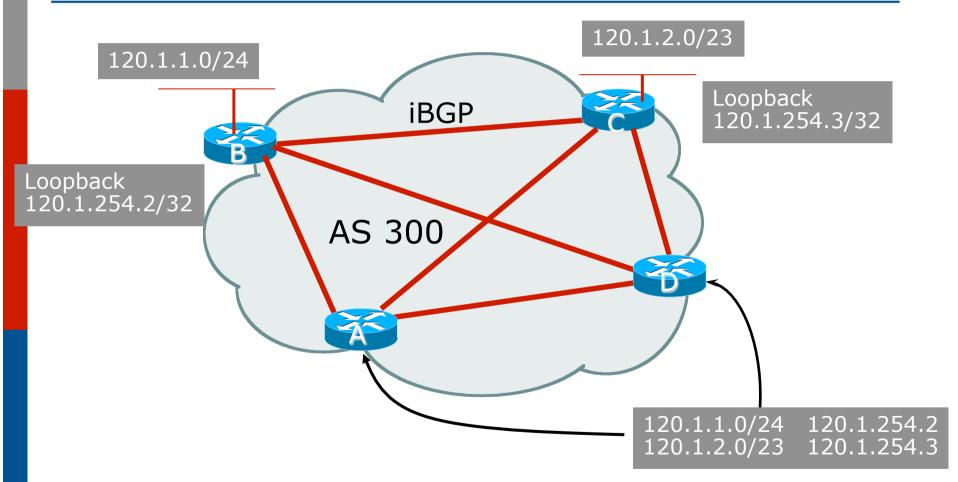
- □ Part of a BGP Update
- Describes the characteristics of prefix
- Can either be transitive or non-transitive
- Some are mandatory


BGP Attributes

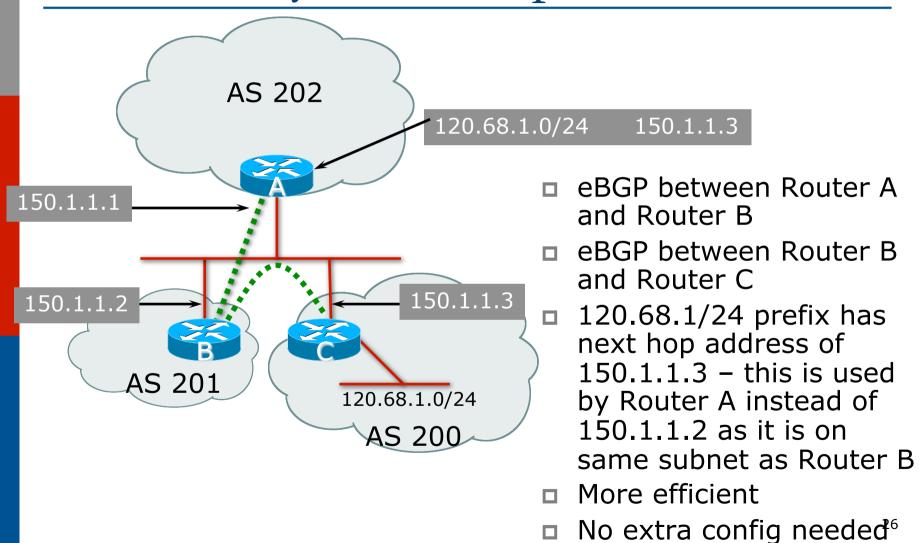
- Carry various information about or characteristics of the prefix being propagated
 - AS-PATH
 - NEXT-HOP
 - ORIGIN
 - AGGREGATOR
 - LOCAL_PREFERENCE
 - Multi-Exit Discriminator
 - (Weight)
 - COMMUNITY


AS-Path


AS-Path (with 16 and 32-bit ASNs)


AS-Path loop detection

Next Hop



iBGP Next Hop

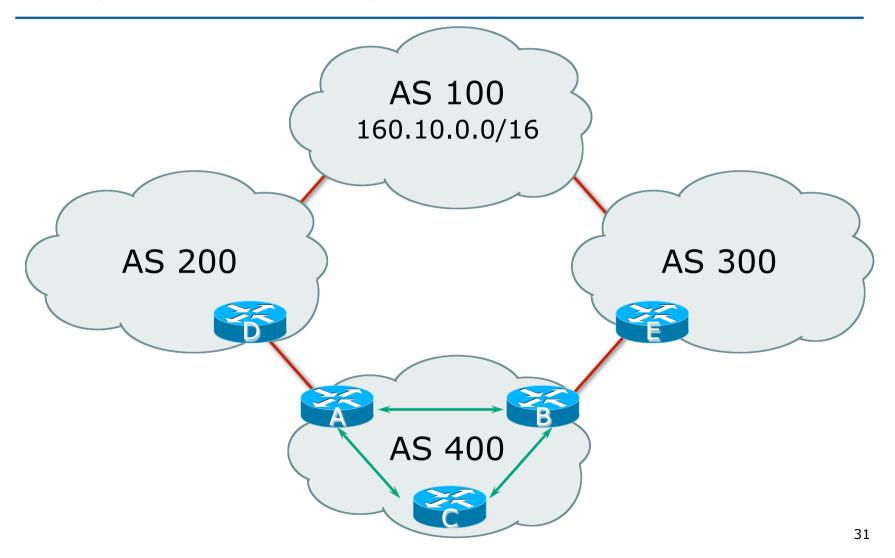
- Next hop is ibgp router loopback address
- Recursive route look-up

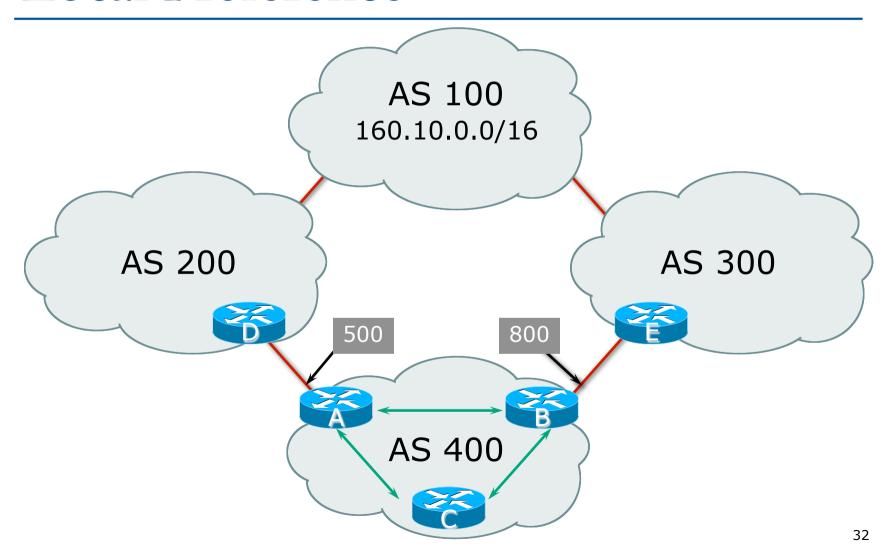
Third Party Next Hop

Next Hop Best Practice

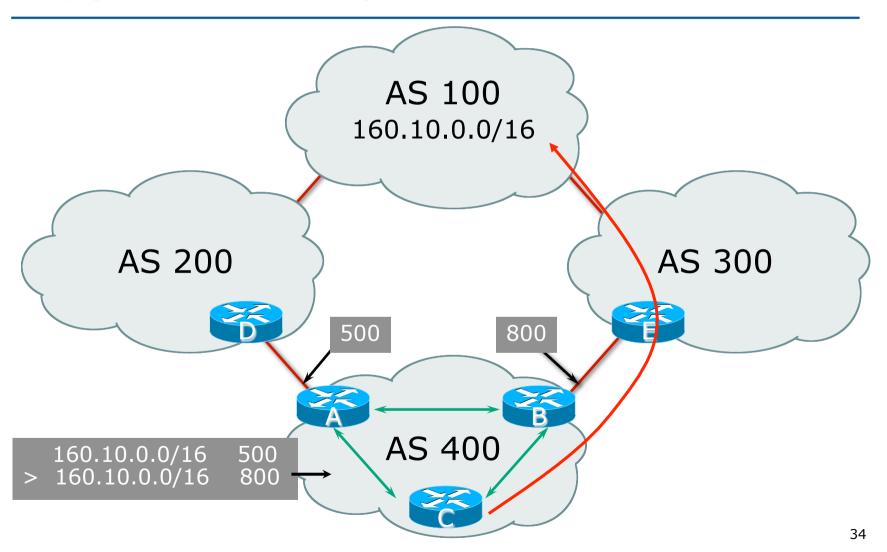
- BGP default is for external next-hop to be propagated unchanged to iBGP peers
 - This means that IGP has to carry external next-hops
 - Forgetting means external network is invisible
 - With many eBGP peers, it is unnecessary extra load on IGP
- ISP Best Practice is to change external next-hop to be that of the local router

Next Hop (Summary)

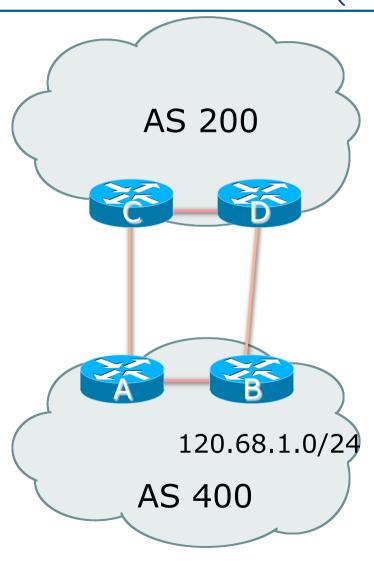

- IGP should carry route to next hops
- Recursive route look-up
- Unlinks BGP from actual physical topology
- Change external next hops to that of local router
- Allows IGP to make intelligent forwarding decision

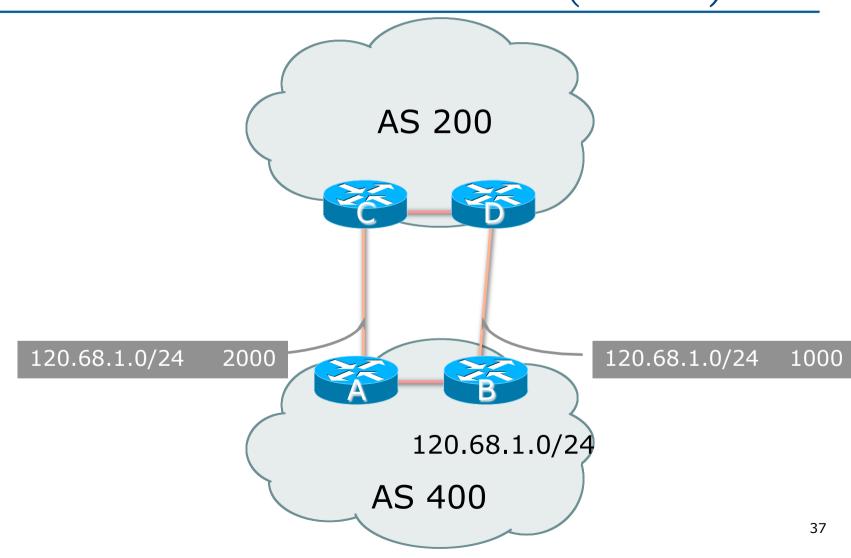

Origin

- Conveys the origin of the prefix
- Historical attribute
 - Used in transition from EGP to BGP
- Transitive and Mandatory Attribute
- Influences best path selection
- Three values: IGP, EGP, incomplete
 - IGP generated by BGP network statement
 - EGP generated by EGP
 - incomplete redistributed from another routing protocol

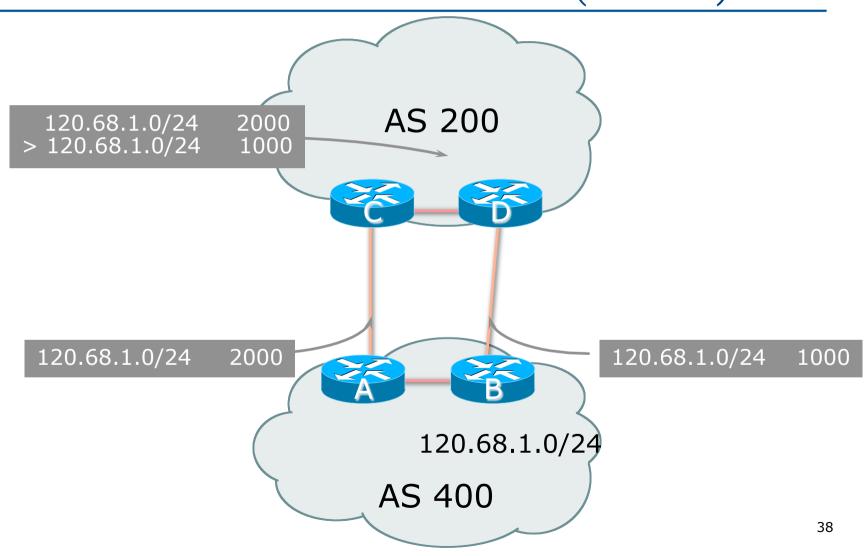

Aggregator

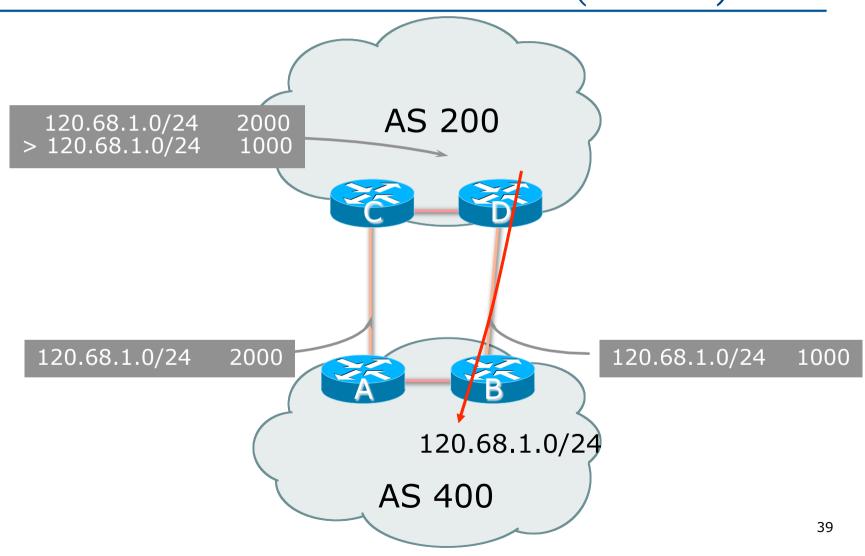
- Conveys the IP address of the router or BGP speaker generating the aggregate route
- Optional & transitive attribute
- Useful for debugging purposes
- Does not influence best path selection





- Non-transitive and optional attribute
- Local to an AS non-transitive
 - Default local preference is 100 (Cisco IOS)
- Used to influence BGP path selection
 - determines best path for outbound traffic
- Path with highest local preference wins


Multi-Exit Discriminator (MED)

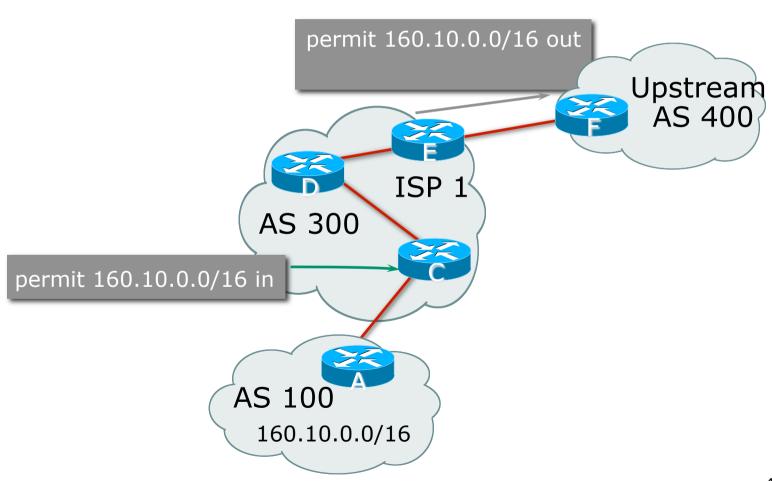

Multi-Exit Discriminator (MED)

Multi-Exit Discriminator (MED)

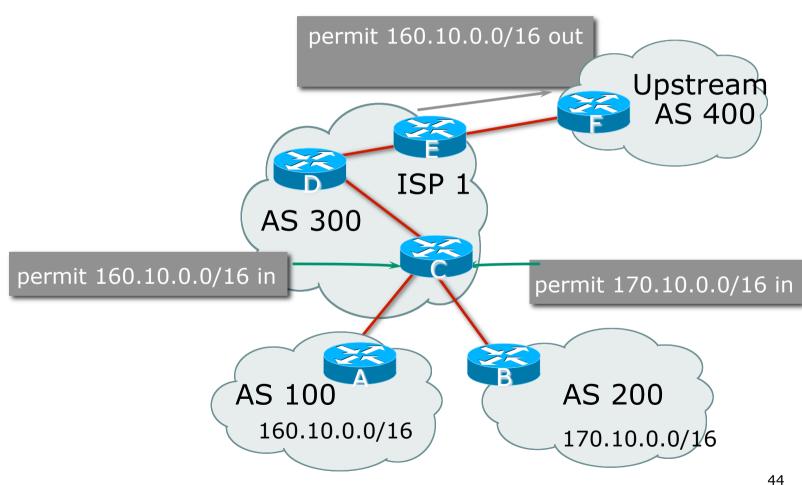
Multi-Exit Discriminator (MED)

Multi-Exit Discriminator

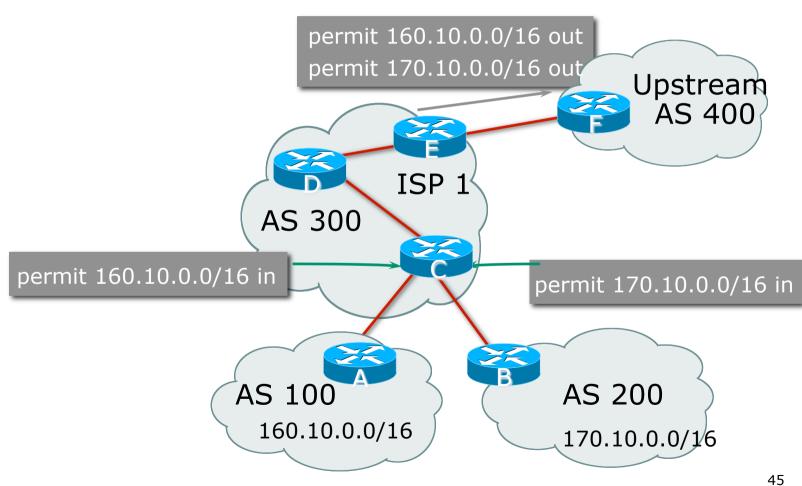
- Inter-AS non-transitive & optional attribute
- Used to convey the relative preference of entry points
 - Determines best path for inbound traffic
- Comparable if paths are from same AS
 - Implementations have a knob to allow comparisons of MEDs from different ASes
- Path with lowest MED wins
- Absence of MED attribute implies MED value of zero (RFC4271)

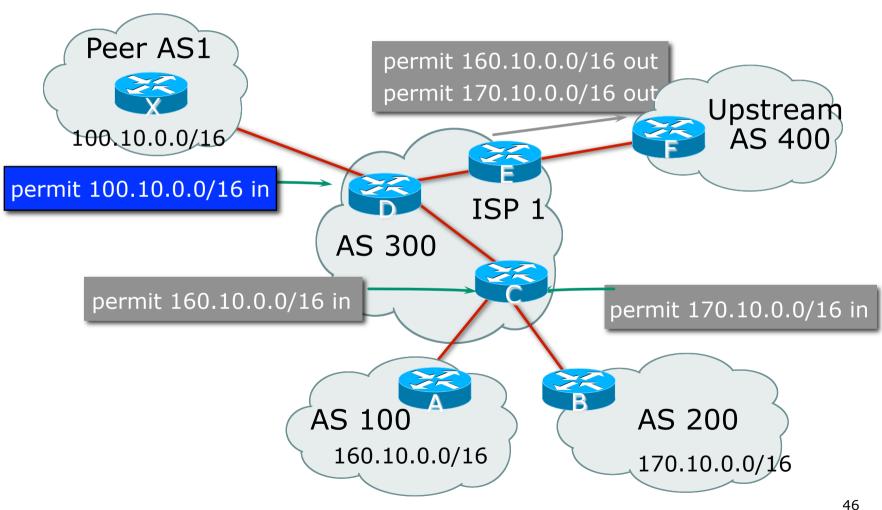

Multi-Exit Discriminator "metric confusion"

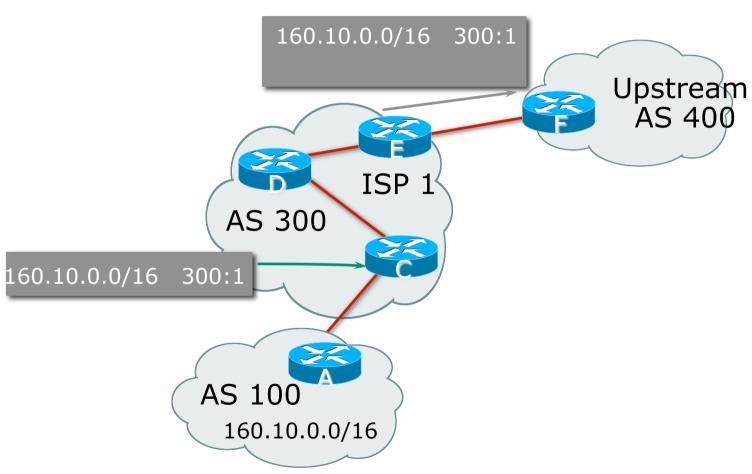
- MED is non-transitive and optional attribute
 - Some implementations send learned MEDs to iBGP peers by default, others do not
 - Some implementations send MEDs to eBGP peers by default, others do not
- Default metric varies according to vendor implementation
 - Original BGP spec (RFC1771) made no recommendation
 - Some implementations handled absence of metric as meaning a metric of 0
 - Other implementations handled the absence of metric as meaning a metric of 2³²-1 (highest possible) or 2³²-2
 - Potential for "metric confusion"

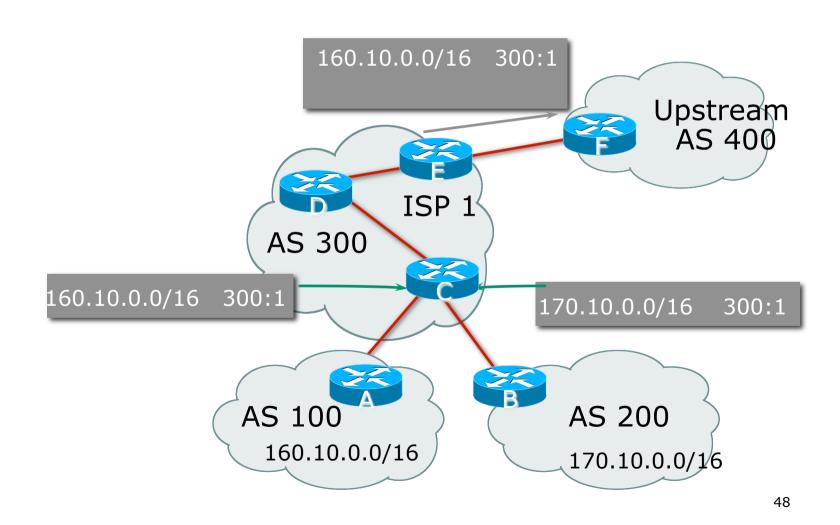

Community

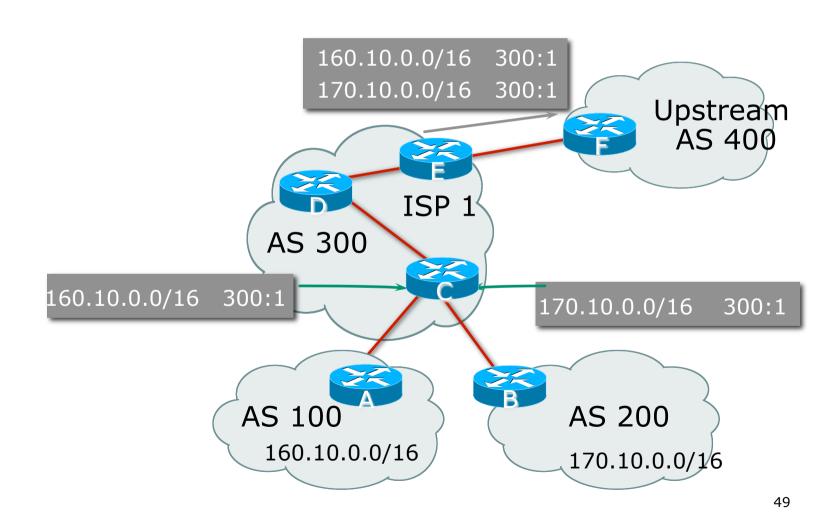
- Communities are described in RFC1997
 - Transitive and Optional Attribute
- 32 bit integer
 - Represented as two 16 bit integers (RFC1998)
 - Common format is <local-ASN>:xx
 - 0:0 to 0:65535 and 65535:0 to 65535:65535 are reserved
- Used to group destinations
 - Each destination could be member of multiple communities
- Very useful in applying policies within and between ASes

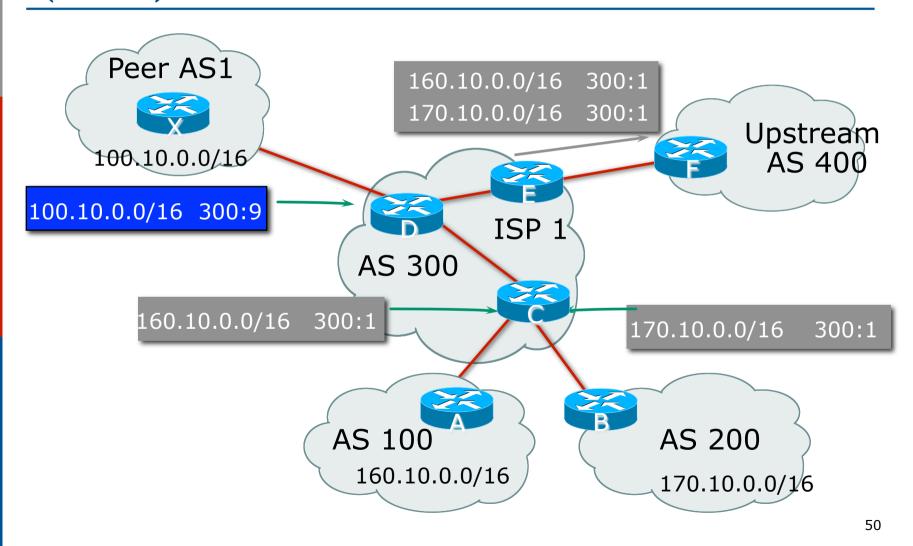

Community Example (before)

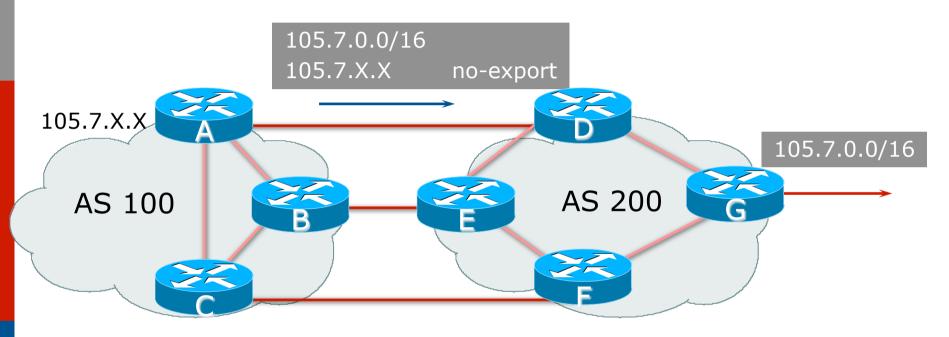

Community Example (before)



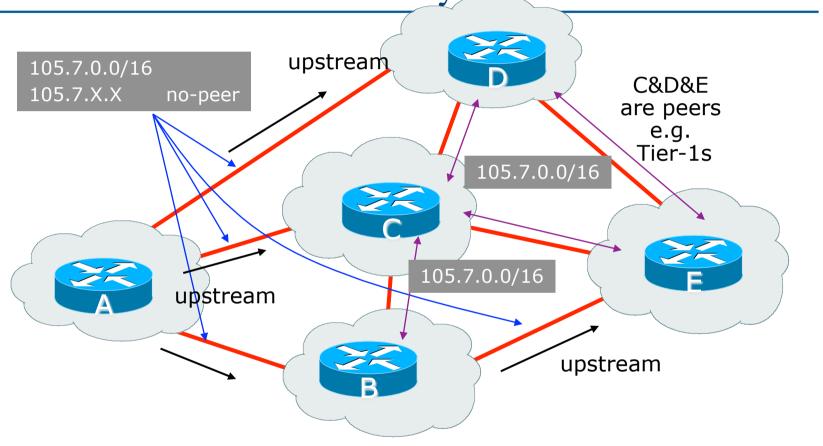

Community Example (before)




Community Example (before)



Well-Known Communities


- Several well known communities
 - www.iana.org/assignments/bgp-well-known-communities
- □ no-export 65535:65281
 - do not advertise to any eBGP peers
- no-advertise 65535:65282
 - do not advertise to any BGP peer
- no-export-subconfed 65535:65283
 - do not advertise outside local AS (only used with confederations)
- □ no-peer 65535:65284
 - do not advertise to bi-lateral peers (RFC3765)

No-Export Community

- AS100 announces aggregate and subprefixes
 - Intention is to improve loadsharing by leaking subprefixes
- Subprefixes marked with no-export community
- Router G in AS200 does not announce prefixes with noexport community set

No-Peer Community

- Sub-prefixes marked with no-peer community are not sent to bi-lateral peers
 - They are only sent to upstream providers

What about 4-byte ASNs?

- Communities are widely used for encoding ISP routing policy
 - 32 bit attribute
- RFC1998 format is now "standard" practice
 - ASN:number
- Fine for 2-byte ASNs, but 4-byte ASNs cannot be encoded
- Solutions:
 - Use "private ASN" for the first 16 bits
 - Wait for http://datatracker.ietf.org/doc/draft-ietf-idras4octet-extcomm-generic-subtype/ to be implemented

Community Implementation details

- Community is an optional attribute
 - Some implementations send communities to iBGP peers by default, some do not
 - Some implementations send communities to eBGP peers by default, some do not
- Being careless can lead to community "confusion"
 - ISPs need consistent community policy within their own networks
 - And they need to inform peers, upstreams and customers about their community expectations

BGP Path Selection Algorithm

Why Is This the Best Path?

BGP Path Selection Algorithm for Cisco IOS: Part One

- Do not consider path if no route to next hop
- 2. Do not consider iBGP path if not synchronised (Cisco IOS)
- 3. Highest weight (local to router)
- Highest local preference (global within AS)
- 5. Prefer locally originated route
- 6. Shortest AS path

BGP Path Selection Algorithm for Cisco IOS: Part Two

- 7. Lowest origin code
 - IGP < EGP < incomplete</p>
- 8. Lowest Multi-Exit Discriminator (MED)
 - If bgp deterministic-med, order the paths by AS number before comparing
 - If bgp always-compare-med, then compare for all paths
 - Otherwise MED only considered if paths are from the same AS (default)

BGP Path Selection Algorithm for Cisco IOS: Part Three

- 9. Prefer eBGP path over iBGP path
- 10. Path with lowest IGP metric to next-hop
- 11. For eBGP paths:
 - If multipath is enabled, install N parallel paths in forwarding table
 - If router-id is the same, go to next step
 - If router-id is not the same, select the oldest path

BGP Path Selection Algorithm for Cisco IOS: Part Four

- 12. Lowest router-id (originator-id for reflected routes)
- 13. Shortest cluster-list
 - Client must be aware of Route Reflector attributes!
- 14. Lowest neighbour address

BGP Path Selection Algorithm

- In multi-vendor environments:
 - Make sure the path selection processes are understood for each brand of equipment
 - All have to follow the RFC, but because of "customer demand", each vendor has:
 - Slightly different implementations
 - Extra steps
 - Extra features
 - Watch out for possible MED confusion

Applying Policy with BGP

Controlling Traffic Flow & Traffic Engineering

Applying Policy in BGP: Why?

- Network operators rarely "plug in routers and go"
- External relationships:
 - Control who they peer with
 - Control who they give transit to
 - Control who they get transit from
- □ Traffic flow control:
 - Efficiently use the scarce infrastructure resources (external link load balancing)
 - Congestion avoidance
 - Terminology: Traffic Engineering

Applying Policy in BGP: How?

- □ Policies are applied by:
 - Setting BGP attributes (local-pref, MED, AS-PATH, community), thereby influencing the path selection process
 - Advertising or Filtering prefixes
 - Advertising or Filtering prefixes according to ASN and AS-PATHs
 - Advertising or Filtering prefixes according to Community membership

Applying Policy with BGP: Tools

- Most implementations have tools to apply policies to BGP:
 - Prefix manipulation/filtering
 - AS-PATH manipulation/filtering
 - Community Attribute setting and matching
- Implementations also have policy language which can do various match/set constructs on the attributes of chosen BGP routes

Extending BGP

- □ Documented in RFC2842
- Capabilities parameters passed in BGP open message
- Unknown or unsupported capabilities will result in NOTIFICATION message
- □ Codes:
 - 0 to 63 are assigned by IANA by IETF consensus
 - 64 to 127 are assigned by IANA "first come first served"
 - 128 to 255 are vendor specific

□ Current capabilities are:

See www.iana.org/assignments/capability-codes

<pre>0 Reserved 1 Multiprotocol Extensions for BGP-4 2 Route Refresh Capability for BGP-4 3 Outbound Route Filtering Capability 4 Multiple routes to a destination capability 5 Extended Next Hop Encoding 64 Graceful Restart Capability 65 Support for 4 octet ASNs 66 Deprecated 67 Support for Dynamic Capability 68 Multisession BGP 69 Add Path Capability 70 Enhanced Route Refresh Capability 71 Long Lived Graceful Restart 72 CP-ORF Capability 73 FQDN Capability</pre>	[RFC3392] [RFC4760] [RFC2918] [RFC5291] [RFC3107] [RFC5549] [RFC4724] [RFC6793] [ID] [ID] [ID] [RFC7313] [ID] [RFC7543] [ID]
--	---

- Multiprotocol extensions
 - This is a whole different world, allowing BGP to support more than IPv4 unicast routes
 - Examples include: v4 multicast, IPv6, v6 multicast, VPNs
 - Another tutorial (or many!)
- Route refresh is a well known scaling technique covered shortly
- □ 32-bit ASNs arrived in 2006
- The other capabilities are still in development or not widely implemented or deployed yet

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Deploying BGP in an ISP network

BGP Scaling Techniques

BGP Scaling Techniques

- Original BGP specification and implementation was fine for the Internet of the early 1990s
 - But didn't scale
- Issues as the Internet grew included:
 - Scaling the iBGP mesh beyond a few peers?
 - Implement new policy without causing flaps and route churning?
 - Keep the network stable, scalable, as well as simple?

BGP Scaling Techniques

- Current Best Practice Scaling Techniques
 - Route Refresh
 - Route Reflectors (and Confederations)
- Deploying 4-byte ASNs
- Deprecated Scaling Techniques
 - Route Flap Damping

Dynamic Reconfiguration

Route Refresh

Route Refresh

- BGP peer reset required after every policy change
 - Because the router does not store prefixes which are rejected by policy
- □ Hard BGP peer reset:
 - Tears down BGP peering & consumes CPU
 - Severely disrupts connectivity for all networks
- □ Soft BGP peer reset (or Route Refresh):
 - BGP peering remains active
 - Impacts only those prefixes affected by policy change

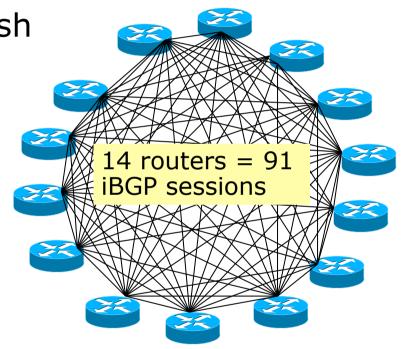
Route Refresh Capability

- Facilitates non-disruptive policy changes
- For most implementations, no configuration is needed
 - Automatically negotiated at peer establishment
- No additional memory is used
- Requires peering routers to support "route refresh capability" – RFC2918
 - Today most vendors do, and some do an automatic route-refresh after BGP Policy changes

Dynamic Reconfiguration

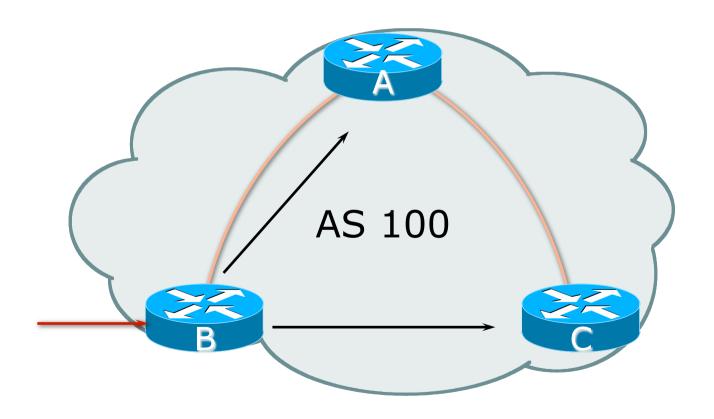
- Use Route Refresh capability
 - Supported on virtually all routers
 - Find out from "show ip bgp neighbor"
 - Non-disruptive, "Good For the Internet"
- Only hard-reset a BGP peering as a last resort

Consider the impact to be equivalent to a router reboot


Route Reflectors

Scaling the iBGP mesh

Scaling iBGP mesh


■ Avoid ½n(n-1) iBGP mesh

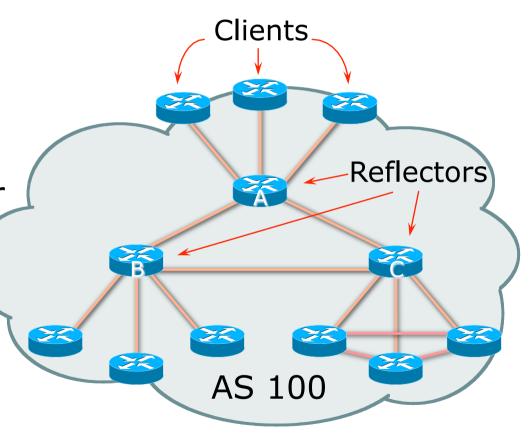
n=1000 ⇒ nearly
 half a million
 ibgp sessions!

- Two solutions
 - Route reflector simpler to deploy and run
 - Confederation more complex, has corner case advantages

Route Reflector: Principle

Route Reflector: Principle

Route Reflector


Reflector receives path from clients and non-clients

Selects best path

If best path is from client, reflect to other clients and non-clients

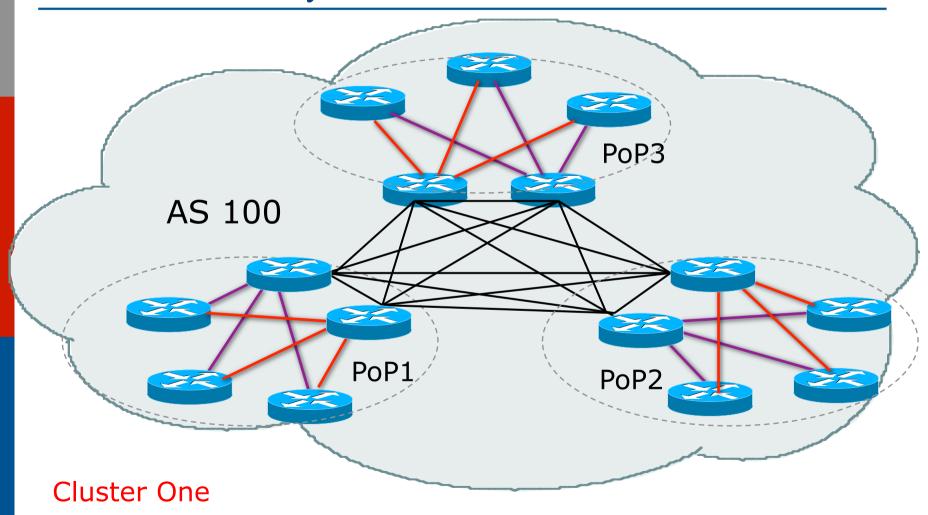
If best path is from non-client, reflect to clients only

- Non-meshed clients
- Described in RFC4456

Route Reflector: Topology

- Divide the backbone into multiple clusters
- At least one route reflector and few clients per cluster
- Route reflectors are fully meshed
- Clients in a cluster could be fully meshed
- Single IGP to carry next hop and local routes

Route Reflector: Loop Avoidance


- Originator_ID attribute
 - Carries the RID of the originator of the route in the local AS (created by the RR)
- Cluster_list attribute
 - The local cluster-id is added when the update is sent by the RR
 - Best to set cluster-id from router-id (address of loopback)
 - (Some ISPs use their own cluster-id assignment strategy – but needs to be well documented!)

Route Reflector: Redundancy

- Multiple RRs can be configured in the same cluster – not advised!
 - All RRs in the cluster must have the same cluster-id (otherwise it is a different cluster)
- A router may be a client of RRs in different clusters
 - Common today in ISP networks to overlay two clusters – redundancy achieved that way
 - → Each client has two RRs = redundancy

Route Reflectors: Redundancy

Cluster Two

Route Reflector: Benefits

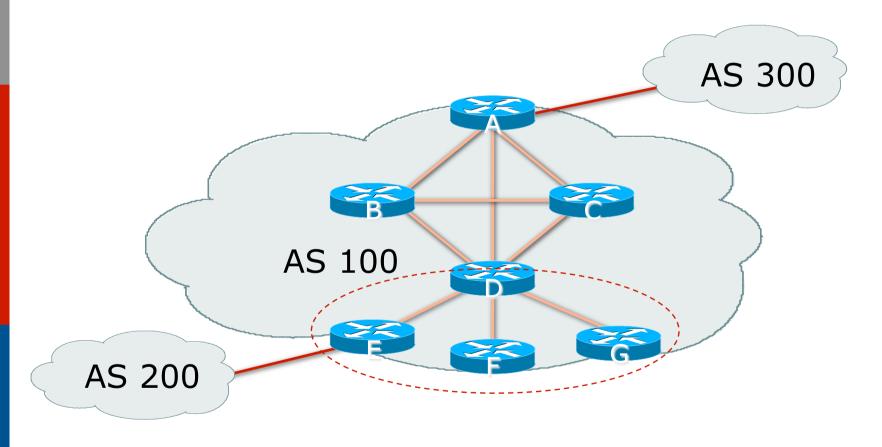
- Solves iBGP mesh problem
- Packet forwarding is not affected
- Normal BGP speakers co-exist
- Multiple reflectors for redundancy
- Easy migration
- Multiple levels of route reflectors

Route Reflector: Deployment

- Where to place the route reflectors?
 - Always follow the physical topology!
 - This will guarantee that the packet forwarding won't be affected
- Typical Service Provider network:
 - PoP has two core routers
 - Core routers are RR for the PoP
 - Two overlaid clusters

Route Reflector: Migration

- Typical ISP network:
 - Core routers have fully meshed iBGP
 - Create further hierarchy if core mesh too big
 Split backbone into regions
- Configure one cluster pair at a time
 - Eliminate redundant iBGP sessions
 - Place maximum one RR per cluster
 - Easy migration, multiple levels


Route Reflector: Deployment

- Where to place the route reflectors?
 - Always follow the physical topology!
 - This will guarantee that the packet forwarding won't be affected
- Typical Service Provider network:
 - PoP has two core routers
 - Core routers are RR for the PoP
 - Two overlaid clusters

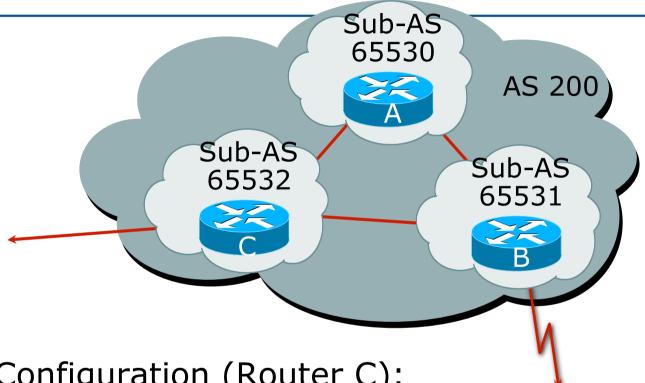
Route Reflector: Migration

- Typical ISP network:
 - Core routers have fully meshed iBGP
 - Create further hierarchy if core mesh too big
 Split backbone into regions
- Configure one cluster pair at a time
 - Eliminate redundant iBGP sessions
 - Place maximum one RR per cluster
 - Easy migration, multiple levels

Route Reflectors: Migration

Migrate small parts of the network, one part at a time.

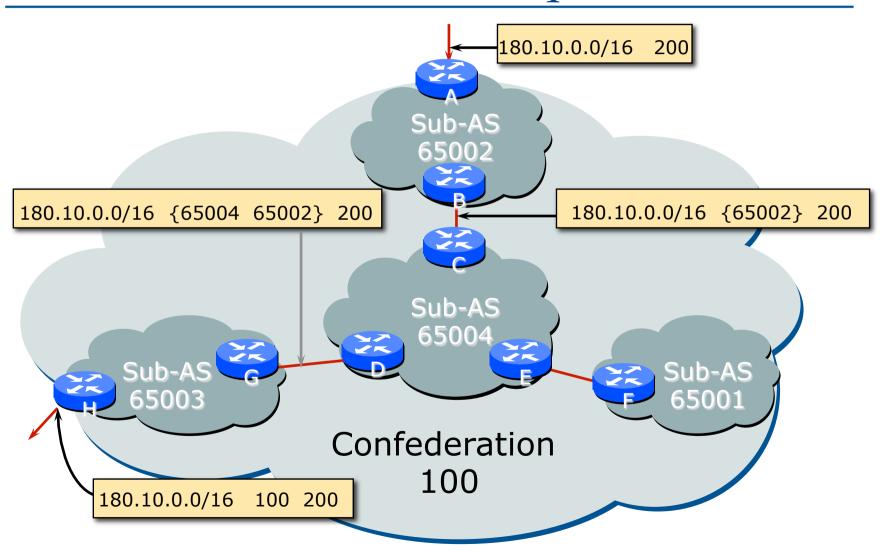
BGP Confederations


Confederations

- □ Divide the AS into sub-AS
 - eBGP between sub-AS, but some iBGP information is kept
 - Preserve NEXT_HOP across the sub-AS (IGP carries this information)
 - Preserve LOCAL_PREF and MED
- Usually a single IGP
- □ Described in RFC5065

Confederations (Cont.)

- Visible to outside world as single AS "Confederation Identifier"
 - Each sub-AS uses a number from the private AS range (64512-65534)
- iBGP speakers in each sub-AS are fully meshed
 - The total number of neighbours is reduced by limiting the full mesh requirement to only the peers in the sub-AS
 - Can also use Route-Reflector within sub-AS


Confederations

Configuration (Router C):

```
router bgp 65532
bgp confederation identifier 200
bgp confederation peers 65530 65531
neighbor 141.153.12.1 remote-as 65530
neighbor 141.153.17.2 remote-as 65531
```

Confederations: AS-Sequence

Route Propagation Decisions

- □ Same as with "normal" BGP:
 - From peer in same sub-AS → only to external peers
 - From external peers → to all neighbors
- "External peers" refers to
 - Peers outside the confederation
 - Peers in a different sub-AS
 - Preserve LOCAL_PREF, MED and NEXT_HOP

RRs or Confederations

	Internet Connectivity	Multi-Level Hierarchy	Policy Control	Scalability	Migration Complexity
Confederations	Anywher e in the Network	Yes	Yes	Medium	Medium to High
Route Reflectors	Anywhere in the Network	Yes	Yes	Very High	Very Low

Most new service provider networks now deploy Route Reflectors from Day One

More points about Confederations

- □ Can ease "absorbing" other ISPs into you ISP e.g., if one ISP buys another
 - Or can use AS masquerading feature available in some implementations to do a similar thing
- Can use route-reflectors with confederation sub-AS to reduce the sub-AS iBGP mesh

Deploying 32-bit ASNs

How to support customers using the extended ASN range

32-bit ASNs

- Standards documents
 - Description of 32-bit ASNs
 - www.rfc-editor.org/rfc/rfc6793.txt
 - Textual representation
 - www.rfc-editor.org/rfc/rfc5396.txt
 - New extended community
 - www.rfc-editor.org/rfc/rfc5668.txt
- AS 23456 is reserved as interface between 16-bit and 32-bit ASN world

32-bit ASNs – terminology

- □ 16-bit ASNs
 - Refers to the range 0 to 65535
- □ 32-bit ASNs
 - Refers to the range 65536 to 4294967295
 - (or the extended range)
- □ 32-bit ASN pool
 - Refers to the range 0 to 4294967295

Getting a 32-bit ASN

- Nowadays:
 - Standard application process to the RIRs
 - Or via upstream provider
 - Sample RIR policy
 - www.apnic.net/docs/policy/asn-policy.html
- Bootstrap phase from 2007-2010
 - From 1st January 2007
 - 32-bit ASNs were available on request
 - From 1st January 2009
 - 32-bit ASNs were assigned by default
 - 16-bit ASNs were only available on request
 - From 1st January 2010
 - No distinction ASNs assigned from the 32-bit pool

Representation (1)

- Initially three formats proposed for the 0-4294967295 ASN range :
 - asplain
 - asdot
 - asdot+
- □ In reality:
 - Most operators favour traditional plain format
 - A few prefer dot notation (X.Y):
 - asdot for 65536-4294967295, e.g 2.4
 - asdot+ for 0-4294967295, e.g 0.64513
 - But regular expressions will have to be completely rewritten for asdot and asdot + !!!

Representation (2)

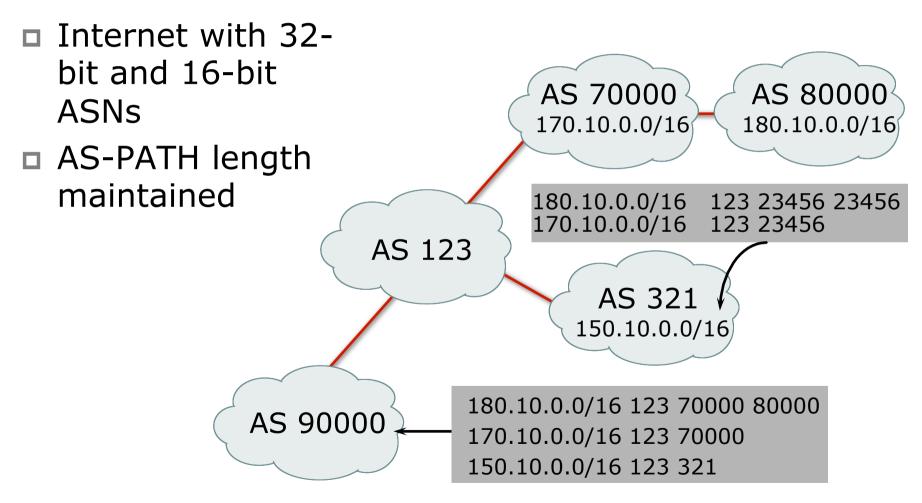
- Rewriting regular expressions for asdot/asdot+ notation
- Example:
 - ^[0-9]+\$ matches any ASN (16-bit and asplain)
 - This and equivalents extensively used in BGP multihoming configurations for traffic engineering
- Equivalent regexp for asdot is:
 - ^([0-9]+)|([0-9]+\.[0-9]+)\$
- Equivalent regexp for asdot+ is:
 - ^[0-9]+\.[0-9]+\$

Changes

- 32-bit ASNs are backward compatible with 16-bit ASNs
- There is no flag day
- You do NOT need to:
 - Throw out your old routers
 - Replace your 16-bit ASN with a 32-bit ASN
- You do need to be aware that:
 - Your customers will come with 32-bit ASNs
 - ASN 23456 is not a bogon!
 - You will need a router supporting 32-bit ASNs to use a 32-bit ASN locally
- If you have a proper BGP implementation, 32-bit ASNs will be transported silently across your network

How does it work?

- If local router and remote router supports configuration of 32-bit ASNs
 - BGP peering is configured as normal using the 32-bit ASN
- If local router and remote router does not support configuration of 32-bit ASNs
 - BGP peering can only use a 16-bit ASN
- If local router only supports 16-bit ASN and remote router/network has a 32-bit ASN
 - Compatibility mode is initiated...


Compatibility Mode (1)

- Local router only supports 16-bit ASN and remote router uses 32-bit ASN
- BGP peering initiated:
 - Remote asks local if 32-bit supported (BGP capability negotiation)
 - When local says "no", remote then presents AS23456
 - Local needs to be configured to peer with remote using AS23456
- □ ⇒ Operator of local router has to configure BGP peering with AS23456

Compatibility Mode (2)

- BGP peering initiated (cont):
 - BGP session established using AS23456
 - 32-bit ASN included in a new BGP attribute called AS4_PATH
 - (as opposed to AS_PATH for 16-bit ASNs)
- Result:
 - 16-bit ASN world sees 16-bit ASNs and 23456 standing in for each 32-bit ASN
 - 32-bit ASN world sees 16 and 32-bit ASNs

Example:

What has changed?

- Two new BGP attributes:
 - AS4_PATH
 - Carries 32-bit ASN path info
 - AS4_AGGREGATOR
 - Carries 32-bit ASN aggregator info
 - Well-behaved BGP implementations will simply pass these along if they don't understand them
- AS23456 (AS_TRANS)

What do they look like?

```
■ IPv4 prefix originated by AS196613
    as4-7200#sh ip bgp 145.125.0.0/20
    BGP routing table entry for 145.125.0.0/20, version
       58734
    Paths: (1 available, best #1, table default)
asplain 131072 12654 196613
format
         204.69.200.25 from 204.69.200.25 (204.69.200.25)
           Origin IGP, localpref 100, valid, internal, best
 □ IPv4 prefix originated by AS3.5
     as4-7200#sh ip bgp 145.125.0.0/20
    BGP routing table entry for 145.125.0.0/20, version
       58734
    Paths: (1 available, best #1, table default)
asdot 2.0 12654 3.5
format
         204.69.200.25 from 204.69.200.25 (204.69.200.25)
           Origin IGP, localpref 100, valid, internal, best
```

What do they look like?

- IPv4 prefix originated by AS196613
 - But 16-bit AS world view:

```
BGP-view1>sh ip bgp 145.125.0.0/20

BGP routing table entry for 145.125.0.0/20, version 113382

Paths: (1 available, best #1, table Default-IP-Routing-Table)

23456 12654 23456

204.69.200.25 from 204.69.200.25 (204.69.200.25)

Origin IGP, localpref 100, valid, external, best

Transition

AS
```

If 32-bit ASN not supported:

- Inability to distinguish between peer ASes using 32-bit ASNs
 - They will all be represented by AS23456
 - Could be problematic for transit provider's policy
 - Workaround: use BGP communities instead
- Inability to distinguish prefix's origin AS
 - How to tell whether origin is real or fake?
 - The real and fake both represented by AS23456
 - (There should be a better solution here!)

If 32-bit ASN not supported:

- Incorrect NetFlow summaries:
 - Prefixes from 32-bit ASNs will all be summarised under AS23456
 - Traffic statistics need to be measured per prefix and aggregated
 - Makes it hard to determine peerability of a neighbouring network
- Unintended filtering by peers and upstreams:
 - Even if IRR supports 32-bit ASNs, not all tools in use can support
 - ISP may not support 32-bit ASNs which are in the IRR and don't realise that AS23456 is the transition AS

Implementations (May 2011)

- Cisco IOS-XR 3.4 onwards
- □ Cisco IOS-XE 2.3 onwards
- Cisco IOS 12.0(32)S12, 12.4(24)T, 12.2SRE, 12.2(33)SXI1 onwards
- □ Cisco NX-OS 4.0(1) onwards
- Quagga 0.99.10 (patches for 0.99.6)
- OpenBGPd 4.2 (patches for 3.9 & 4.0)
- Juniper JunOSe 4.1.0 & JunOS 9.1 onwards
- Redback SEOS
- □ Force10 FTOS7.7.1 onwards
- http://as4.cluepon.net/index.php/Software_Support used to have a complete list

Route Flap Damping

Network Stability for the 1990s

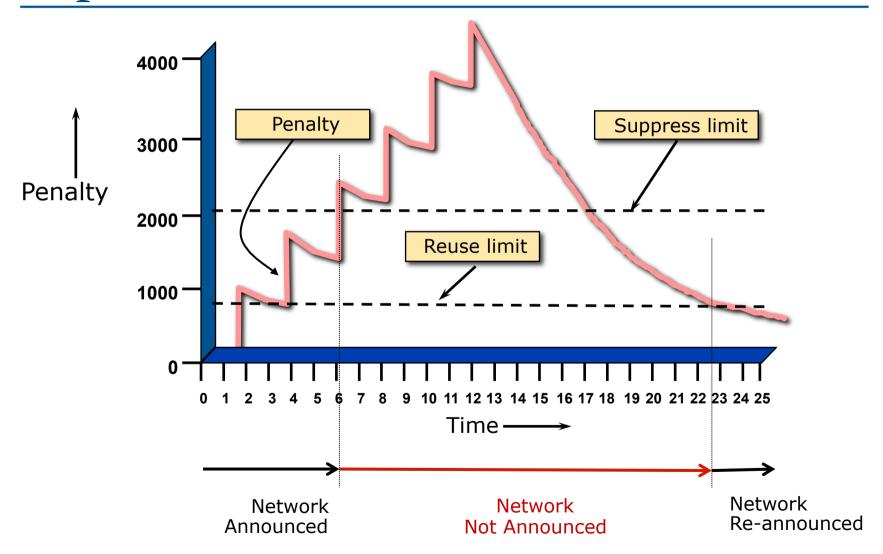
Network Instability for the 21st Century!

Route Flap Damping

- For many years, Route Flap Damping was a strongly recommended practice
- Now it is strongly discouraged as it appears to cause far greater network instability than it cures
- But first, the theory...

Route Flap Damping

- Route flap
 - Going up and down of path or change in attribute
 - BGP WITHDRAW followed by UPDATE = 1 flap
 - eBGP neighbour going down/up is NOT a flap
 - Ripples through the entire Internet
 - Wastes CPU
- Damping aims to reduce scope of route flap propagation


Route Flap Damping (continued)

- Requirements
 - Fast convergence for normal route changes
 - History predicts future behaviour
 - Suppress oscillating routes
 - Advertise stable routes
- Implementation described in RFC 2439

Operation

- Add penalty (1000) for each flap
 - Change in attribute gets penalty of 500
- Exponentially decay penalty
 - Half life determines decay rate
- Penalty above suppress-limit
 - Do not advertise route to BGP peers
- Penalty decayed below reuse-limit
 - Re-advertise route to BGP peers
 - Penalty reset to zero when it is half of reuselimit

Operation

Operation

- Only applied to inbound announcements from eBGP peers
- Alternate paths still usable
- Controllable by at least:
 - Half-life
 - reuse-limit
 - suppress-limit
 - maximum suppress time

Configuration

- Implementations allow various policy control with flap damping
 - Fixed damping, same rate applied to all prefixes
 - Variable damping, different rates applied to different ranges of prefixes and prefix lengths

Route Flap Damping History

- □ First implementations on the Internet by 1995
- Vendor defaults too severe
 - RIPE Routing Working Group recommendations in ripe-178, ripe-210, and ripe-229
 - http://www.ripe.net/ripe/docs
 - But many ISPs simply switched on the vendors' default values without thinking

Serious Problems:

- "Route Flap Damping Exacerbates Internet Routing Convergence"
 - Zhuoqing Morley Mao, Ramesh Govindan, George Varghese & Randy H. Katz, August 2002
- "What is the sound of one route flapping?"
 - Tim Griffin, June 2002
- Various work on routing convergence by Craig Labovitz and Abha Ahuja a few years ago
- "Happy Packets"
 - Closely related work by Randy Bush et al

Problem 1:

- □ One path flaps:
 - BGP speakers pick next best path, announce to all peers, flap counter incremented
 - Those peers see change in best path, flap counter incremented
 - After a few hops, peers see multiple changes simply caused by a single flap → prefix is suppressed

Problem 2:

- Different BGP implementations have different transit time for prefixes
 - Some hold onto prefix for some time before advertising
 - Others advertise immediately
- Race to the finish line causes appearance of flapping, caused by a simple announcement or path change → prefix is suppressed

Solution:

- Misconfigured Route Flap Damping will seriously impact access to:
 - Your network and
 - The Internet
- More background contained in RIPE Routing Working Group document:
 - www.ripe.net/ripe/docs/ripe-378
- Recommendations now in:
 - www.rfc-editor.org/rfc/rfc7196.txt and www.ripe.net/ ripe/docs/ripe-580

BGP for Internet Service Providers

- BGP Basics
- Scaling BGP
- Deploying BGP in an ISP network

Deploying BGP in an ISP Network

Okay, so we've learned all about BGP now; how do we use it on our network??

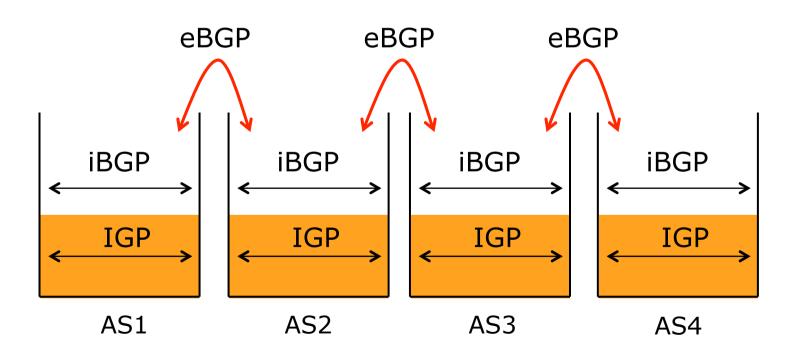
Deploying BGP

- The role of IGPs and iBGP
- Aggregation
- Receiving Prefixes
- Configuration Tips

The role of IGP and iBGP

Ships in the night?
Or
Good foundations?

BGP versus OSPF/ISIS


- Internal Routing Protocols (IGPs)
 - Examples are ISIS and OSPF
 - Used for carrying infrastructure addresses
 - NOT used for carrying Internet prefixes or customer prefixes
 - Design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

BGP versus OSPF/ISIS

- BGP is used
 - Internally (iBGP)
 - Externally (eBGP)
- □ iBGP is used to carry:
 - Some/all Internet prefixes across backbone
 - Customer prefixes
- □ eBGP is used to:
 - Exchange prefixes with other ASes
 - Implement routing policy

BGP/IGP model used in ISP networks

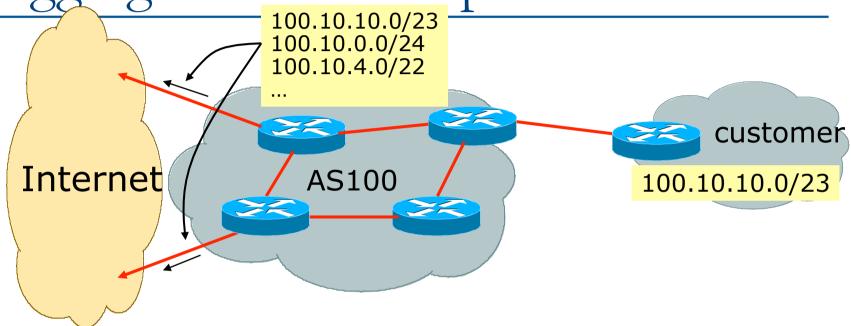
Model representation

BGP versus OSPF/ISIS

- □ DO NOT:
 - Distribute BGP prefixes into an IGP
 - Distribute IGP routes into BGP
 - Use an IGP to carry customer prefixes
- YOUR NETWORK WILL NOT SCALE

Injecting prefixes into iBGP

- Use iBGP to carry customer prefixes
 - Don't ever use IGP
- Point static route to customer interface
- Enter network into BGP process
 - Ensure that implementation options are used so that the prefix always remains in iBGP, regardless of state of interface
 - i.e. avoid iBGP flaps caused by interface flaps

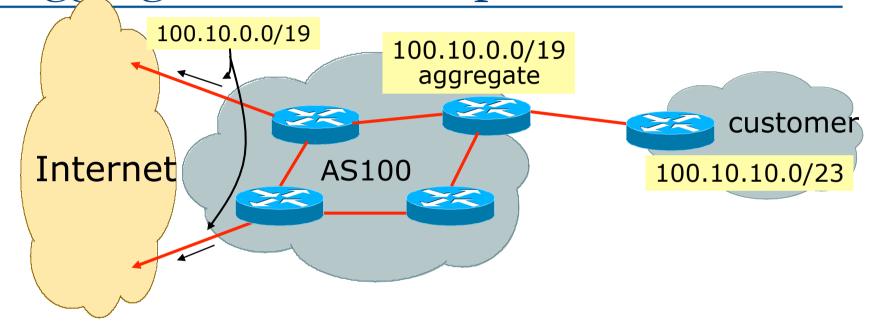

Aggregation

Quality or Quantity?

Aggregation

- Aggregation means announcing the address block received from the RIR to the other ASes connected to your network
- Subprefixes of this aggregate may be:
 - Used internally in the ISP network
 - Announced to other ASes to aid with multihoming
- Too many operators are still thinking about class Cs, resulting in a proliferation of /24s in the Internet routing table
 - December 2015: 314000 /24s in IPv4 table of 573000 prefixes
- The same is happening for /48s with IPv6
 - December 2015: 11400 /48s in IPv6 table of 25100 prefixes

Aggregation – Example


- Customer has /23 network assigned from AS100's /19 address block
- AS100 announces customers' individual networks to the Internet

Aggregation – Bad Example

- Customer link goes down
 - Their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- Their ISP doesn't aggregate its /19 network block
 - /23 network withdrawal announced to peers
 - starts rippling through the Internet
 - added load on all Internet backbone routers as network is removed from routing table

- Customer link returns
 - Their /23 network is now visible to their ISP
 - Their /23 network is readvertised to peers
 - Starts rippling through Internet
 - Load on Internet backbone routers as network is reinserted into routing table
 - Some ISP's suppress the flaps
 - Internet may take 10-20 min or longer to be visible
 - Where is the Quality of Service???

Aggregation – Example

- Customer has /23 network assigned from AS100's /19 address block
- AS100 announced /19 aggregate to the Internet

Aggregation – Good Example

- Customer link goes down
 - their /23 network becomes unreachable
 - /23 is withdrawn from AS100's iBGP
- /19 aggregate is still being announced
 - no BGP hold down problems
 - no BGP propagation delays
 - no damping by other ISPs

- Customer link returns
- Their /23 network is visible again
 - The /23 is re-injected into AS100's iBGP
- The whole Internet becomes visible immediately
- Customer has Quality of Service perception

Aggregation – Summary

- Good example is what everyone should do!
 - Adds to Internet stability
 - Reduces size of routing table
 - Reduces routing churn
 - Improves Internet QoS for everyone
- Bad example is what too many still do!
 - Why? Lack of knowledge?
 - Laziness?

Separation of iBGP and eBGP

- Many ISPs do not understand the importance of separating iBGP and eBGP
 - iBGP is where all customer prefixes are carried
 - eBGP is used for announcing aggregate to Internet and for Traffic Engineering
- Do NOT do traffic engineering with customer originated iBGP prefixes
 - Leads to instability similar to that mentioned in the earlier bad example
 - Even though aggregate is announced, a flapping subprefix will lead to instability for the customer concerned
- Generate traffic engineering prefixes on the Border Router

The Internet Today (December 2015)

Current Internet Routing Table Statistics

BGP Routing Table Entries	573136
Prefixes after maximum aggregation	212475
Unique prefixes in Internet	278860
Prefixes smaller than registry alloc	188598
/24s announced	313799
ASes in use	52219

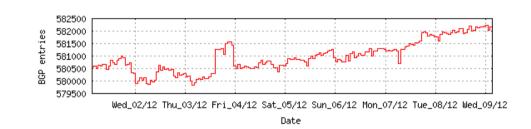
- (maximum aggregation is calculated by Origin AS)
- (unique prefixes > max aggregation means that operators are announcing aggregates from their blocks without a covering aggregate)

Efforts to improve aggregation

- The CIDR Report
 - Initiated and operated for many years by Tony Bates
 - Now combined with Geoff Huston's routing analysis
 - www.cidr-report.org
 - (covers both IPv4 and IPv6 BGP tables)
 - Results e-mailed on a weekly basis to most operations lists around the world
 - Lists the top 30 service providers who could do better at aggregating
- RIPE Routing WG aggregation recommendations
 - IPv4: RIPE-399 www.ripe.net/ripe/docs/ripe-399.html
 - IPv6: RIPE-532 www.ripe.net/ripe/docs/ripe-532.html

Efforts to Improve Aggregation The CIDR Report

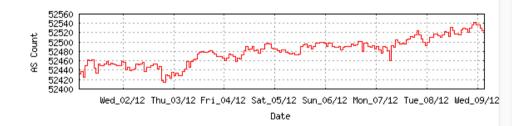
- Also computes the size of the routing table assuming ISPs performed optimal aggregation
- Website allows searches and computations of aggregation to be made on a per AS basis
 - Flexible and powerful tool to aid ISPs
 - Intended to show how greater efficiency in terms of BGP table size can be obtained without loss of routing and policy information
 - Shows what forms of origin AS aggregation could be performed and the potential benefit of such actions to the total table size
 - Very effectively challenges the traffic engineering excuse



Status Summary

Table History

Date	Prefixes	CIDR Aggregated
02-12-15	580311	313738
03-12-15	580298	313913
04-12-15	580588	314014
05-12-15	580613	314275
06-12-15	580927	314460
07-12-15	581257	314665
08-12-15	581766	315027
09-12-15	582187	315075

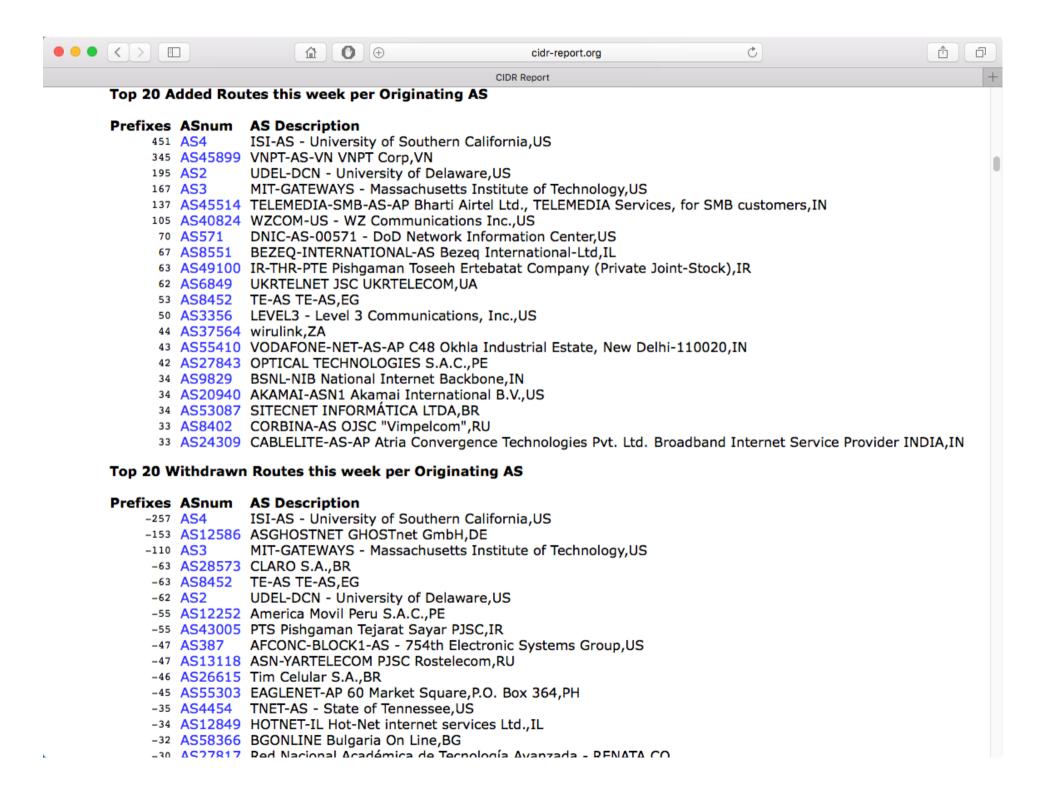

AS Summary

52526	Number of ASes in routing system
20721	Number of ASes announcing only one prefix
5612	Largest number of prefixes announced by an AS
	AS4538: ERX-CERNET-BKB China
	Education and Research Network
	Center,CN
120893696	Largest address span announced by an AS (/32s)
	AS4134: CHINANET-BACKBONE
	No.31,Jin-rong Street,CN

Plot: AS count

Plot: Average announcements per origin AS Report: ASes ordered by originating address span Report: ASes ordered by transit address span

Report: Autonomous System number-to-name mapping (from Registry WHOIS data)



Aggregation Summary

The algorithm used in this report proposes aggregation only when there is a precise match using AS path so as to preserve traffic transit policies. Aggregation is also proposed across non-advertised address space ('holes').

09De	c15					
AS num	NetsNow	NetsAggr	NetGain	% Gain	Description	

Table	582011	314966	267045	45.9%	All ASes
AS22773	3247	202	3045	93.8%	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.,US
AS4538	5611	2769	2842	50.7%	ERX-CERNET-BKB China Education and Research Network Center, CN
AS17974	2727	96	2631	96.5%	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia,ID
AS6389	2508	45	2463	98.2%	BELLSOUTH-NET-BLK - BellSouth.net Inc.,US
AS39891	2474	33	2441	98.7%	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
AS7545	3098	893	2205	71.2%	TPG-INTERNET-AP TPG Telecom Limited,AU
AS9394	2115	206	1909		CTTNET China TieTong Telecommunications Corporation,CN
AS9808	1687	85	1602	95.0%	CMNET-GD Guangdong Mobile Communication Co.Ltd.,CN
AS4755	2066	506	1560	75.5%	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP,IN
AS10620	3407	1906	1501		Telmex Colombia S.A.,CO
AS20115	1891	404	1487		CHARTER-NET-HKY-NC - Charter Communications, US
AS4766	3016	1533	1483		KIXS-AS-KR Korea Telecom,KR
AS6983	1697	242	1455	85.7%	ITCDELTA - Earthlink, Inc.,US
AS9498	1403	119	1284		BBIL-AP BHARTI Airtel Ltd.,IN
AS18566	2213	1013	1200	54.2%	MEGAPATH5-US - MegaPath Corporation,US
AS4323	1576	396	1180		TWTC - tw telecom holdings, inc.,US
AS38197	1439	260	1179		SUNHK-DATA-AS-AP Sun Network (Hong Kong) Limited,HK
AS7552	1368	200	1168		VIETEL-AS-AP Viettel Corporation,VN
AS8402	1183	22	1161		CORBINA-AS OJSC "Vimpelcom",RU
AS38285	1167	18	1149	98.5%	M2TELECOMMUNICATIONS-AU M2 Telecommunications Group Ltd,AU
AS8151	2116	1000	1116		Uninet S.A. de C.V.,MX
AS3356	2612	1558	1054	40.4%	LEVEL3 - Level 3 Communications, Inc.,US
AS7303	1579	527	1052		Telecom Argentina S.A.,AR
AS4808	1586	537	1049		CHINA169-BJ CNCGROUP IP network China169 Beijing Province Network,CN
AS4788	1403	425	978		TMNET-AS-AP TM Net, Internet Service Provider,MY
AS12479	1051	86	965		UNI2-AS France Telecom Espana SA,ES
AS22561	1173	218	955		CENTURYLINK-LEGACY-LIGHTCORE - CenturyTel Internet Holdings, Inc.,US
AS28573	1245	301	944		CLARO S.A.,BR
AS7738	993	76	917	92.3%	Telemar Norte Leste S.A.,BR
AS18881	879	22	857	97.5%	Global Village Telecom,BR

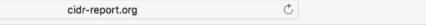
Report: Withdrawn Route count per Originating AS

More Specifics

A list of route advertisements that appear to be more specific than the original Class-based prefix mask, or more specific than the registry allocation size.

Top 20 ASes advertising more specific prefixes

More Specifics	Total Prefixes	ASnum	AS Description
9191	11514	AS4	ISI-AS - University of Southern California,US
8564	12414	AS3	MIT-GATEWAYS - Massachusetts Institute of Technology,US
7351	8899	AS2	UDEL-DCN - University of Delaware,US
5486	5611	AS4538	ERX-CERNET-BKB China Education and Research Network Center, CN
3407	3407	AS10620	Telmex Colombia S.A.,CO
3174	3247	AS22773	ASN-CXA-ALL-CCI-22773-RDC - Cox Communications Inc.,US
3005	3098	AS7545	TPG-INTERNET-AP TPG Telecom Limited,AU
2919	3016	AS4766	KIXS-AS-KR Korea Telecom,KR
2715	2727	AS17974	TELKOMNET-AS2-AP PT Telekomunikasi Indonesia,ID
2482	2508	AS6389	BELLSOUTH-NET-BLK - BellSouth.net Inc.,US
2471	2474	AS39891	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
2386	2612	AS3356	LEVEL3 - Level 3 Communications, Inc.,US
2249	2249	AS20940	AKAMAI-ASN1 Akamai International B.V.,US
2195	2213	AS18566	MEGAPATH5-US - MegaPath Corporation, US
2101	2115	AS9394	CTTNET China TieTong Telecommunications Corporation,CN
2052	2116	AS8151	Uninet S.A. de C.V.,MX
2047	2066	AS4755	TATACOMM-AS TATA Communications formerly VSNL is Leading ISP,IN
1898	1924	AS34984	TELLCOM-AS TELLCOM ILETISIM HIZMETLERI A.S.,TR
1857	1891	AS20115	CHARTER-NET-HKY-NC - Charter Communications, US
1851	2215	AS9829	BSNL-NIB National Internet Backbone,IN


Report: ASes ordered by number of more specific prefixes

Report: More Specific prefix list (by AS)

Report: More Specific prefix list (ordered by prefix)

Possible Bogus Routes and AS Announcements

Barrelli Barrelli Barrelli

AS Report

Aggregation Suggestions

Filter: Aggregates, Specifics

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Rank AS 5 AS6389	AS Name Current Wthdw Aggte Annce Redctn % BELLSOUTH-NET-BLK - BellSouth.net Inc.,US 2508 2467 4 45 2463 98.21%	
Prefix	AS Path Aggregation Suggestion	
12.81.90.0/23	6939 7018 6389	
12.81.120.0/24	6939 7018 6389	
12.83.5.0/24	6939 7018 6389	
12.83.7.0/24	6939 7018 6389	
65.0.0.0/12	6939 7018 6389	
65.0.0.0/18	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.0.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.40.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.50.0/23	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.64.0/18	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.128.0/18	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.192.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.0.224.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.1.0.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.1.32.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.1.64.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.1.224.0/20	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.1.240.0/20	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.2.0.0/16	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.2.0.0/17	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.2.128.0/17	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.3.224.0/19	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.4.64.0/18	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.4.192.0/18	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.1.0/24	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.12.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.16.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.20.0/23	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.21.0/24	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.22.0/23	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.24.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.28.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.32.0/20	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.34.0/24	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.46.0/24	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.57.0/24		
65.5.64.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.68.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
65.5.74.0/23 65.5.76.0/22	6939 7018 6389 - Withdrawn - matching aggregate 65.0.0.0/12 6939 7018 6389	
03.3.70.07XX	0737 /ULO 0307 - WILDOTAWN = MALCOTING ADDREDATE 03.U.U.U/IZ 0737 /ULO 0307	

Aggregation Suggestions

Filter: Aggregates, Specifics

This report does not take into account conditions local to each origin AS in terms of policy or traffic engineering requirements, so this is an approximate guideline as to aggregation possibilities.

Rank AS 16 <u>AS18566</u>	AS Name Current Wthdw Aggte Annce Redctn % MEGAPATH5-US - MegaPath Corporation, US 2213 1409 209 1013 1200 54.23%
Prefix	AS Path Aggregation Suggestion
64.6.160.0/23	6939 18566
64.6.164.0/23	6939 18566
64.6.166.0/24	6939 2828 18566
64.6.167.0/24	6939 18566
64.50.206.0/23	6939 18566
64.51.126.0/23	6939 18566
64.81.16.0/22	6939 1299 3356 18566
64.81.20.0/22	6939 18566
64.81.22.0/24	6939 18566 - Withdrawn - matching aggregate 64.81.20.0/22 6939 18566
64.81.24.0/21	6939 1299 3356 18566 + Announce - aggregate of 64.81.24.0/22 (6939 1299 3356 18566) and 64.81.28.0/22 (6939 1299 3356
64.81.24.0/22	6939 1299 3356 18566 - Withdrawn - aggregated with 64.81.28.0/22 (6939 1299 3356 18566)
64.81.28.0/22	6939 1299 3356 18566 - Withdrawn - aggregated with 64.81.24.0/22 (6939 1299 3356 18566)
64.81.32.0/20	6939 1299 18566
64.81.32.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.33.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.34.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.35.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.36.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.37.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.38.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.39.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.40.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.44.0/24	6939 1299 18566 - Withdrawn - matching aggregate 64.81.32.0/20 6939 1299 18566
64.81.48.0/20	6939 1299 3356 18566
64.81.48.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566 6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.49.0/24 64.81.50.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.51.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.52.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.53.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.54.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.55.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.56.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.57.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.58.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.59.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.60.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.61.0/24	6939 1299 3356 18566 - Withdrawn - matching aggregate 64.81.48.0/20 6939 1299 3356 18566
64.81.64.0/20	6939 1299 3356 18566
CA 01 CA 0/24	CORD 1200 2350 10500 WithJames

Importance of Aggregation

- Size of routing table
 - Router Memory is not so much of a problem as it was in the 1990s
 - Routers can be specified to carry 1 million+ prefixes
- Convergence of the Routing System
 - This is a problem
 - Bigger table takes longer for CPU to process
 - BGP updates take longer to deal with
 - BGP Instability Report tracks routing system update activity
 - http://bgpupdates.potaroo.net/instability/bgpupd.html

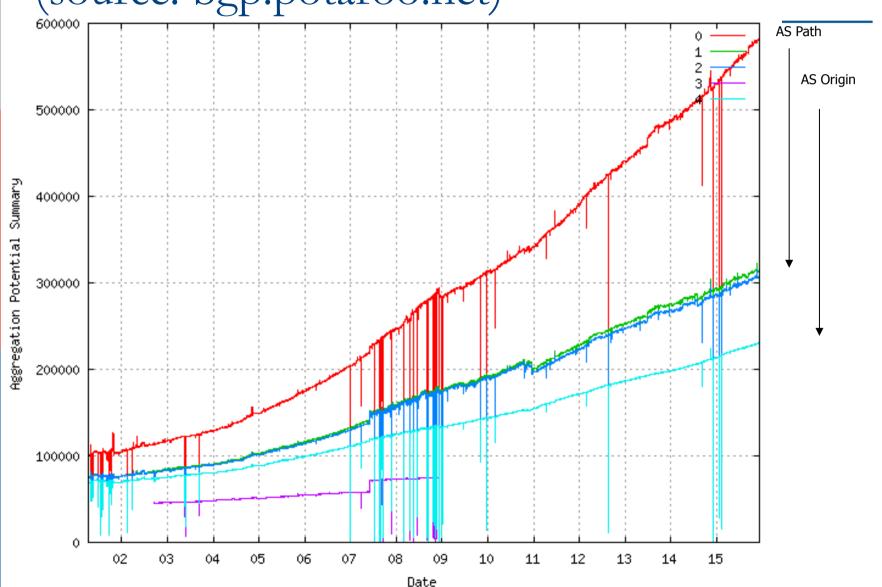
The BGP Instability Report

The BGP Instability Report is updated daily. This report was generated on 08 December 2015 06:39 (UTC+1000)

50 Most active ASes for the past 7 days

RANK	ASN	UPDs	%	Prefixes	UPDs/Prefix	AS NAME
1	2635	473609	7.53%	84	5638.20	AUTOMATTIC - Automattic, Inc,US
2	36992	470605	7.48%	446	1055.17	ETISALAT-MISR,EG
3	9829	437888	6.96%	2218	197.42	BSNL-NIB National Internet Backbone,IN
4	8452	197253	3.13%	1377	143.25	TE-AS TE-AS,EG
5	21669	105729	1.68%	21	5034.71	NJ-STATEWIDE-LIBRARY-NETWORK - New Jersey State Library,US
6	10493	80722	1.28%	7	11531.71	GCN-AS - Grand Central Networks Inc.,US
7	56041	72891	1.16%	525	138.84	CMNET-ZHEJIANG-AP China Mobile communications corporation,CN
8	56046	62134	0.99%	464	133.91	CMNET-JIANGSU-AP China Mobile communications corporation,CN
9	11259	61867	0.98%	58	1066.67	ANGOLATELECOM,AO
10	637	59791	0.95%	242	247.07	DNIC-ASBLK-00616-00665 - DoD Network Information Center,US
11	13118	51281	0.81%	97	528.67	ASN-YARTELECOM PJSC Rostelecom,RU
12	10859	44334	0.70%	26	1705.15	COMPUTER-SCIENCES-CORP-NTIS - Computer Sciences Corp - NTIS,US
13	55021	41747	0.66%	2	20873.50	OTTCOLO - ottcolo inc.,CA
14	22059	39506	0.63%	7	5643.71	-Reserved AS-,ZZ
15	25364	36044	0.57%	16	2252.75	EgyptCyberCenter-AS,EG
16	15475	33634	0.53%	15	2242.27	NOL,EG
17	48159	31888	0.51%	344	92.70	TIC-AS Telecommunication Infrastructure Company,IR
18	25576	30765	0.49%	18	1709.17	AFMIC,EG
19	39891	29648	0.47%	2473	11.99	ALJAWWALSTC-AS Saudi Telecom Company JSC,SA
20	47794	29503	0.47%	131	225.21	ATHEEB-AS Etihad Atheeb Telecom Company,SA
21	246	26506	0.42%	318	83.35	ASIFICS-GW-AS - 754th Electronic Systems Group,US
22	3816	24290	0.39%	978		COLOMBIA TELECOMUNICACIONES S.A. ESP,CO
23	11105	24278	0.39%	17	1428.12	SFU-AS - Simon Fraser University,CA
24	20030	23998	0.38%	12		MCCLI-ARTELCO - Artelco,US
25	2472	23828	0.38%	10	2382.80	FR-DOM-GUYANE Guyane Francaise,FR
26	3709	23263	0.37%	27	861.59	NET-CITY-SA - City of San Antonio,US

The BGP Instability Report


50 Most active Prefixes for the past 7 days

RANK	PREFIX	UPDs	%	Origin AS AS NAME
1	192.0.119.0/24	118506	1.82%	2635 AUTOMATTIC - Automattic, Inc,US
2	192.0.122.0/24	118232	1.82%	2635 AUTOMATTIC - Automattic, Inc,US
3	192.0.121.0/24	118143	1.82%	2635 AUTOMATTIC - Automattic, Inc,US
4	192.0.120.0/24	117944	1.82%	2635 AUTOMATTIC - Automattic, Inc,US
5	209.212.8.0/24	105713	1.63%	21669 NJ-STATEWIDE-LIBRARY-NETWORK - New Jersey State Library,US
6	93.181.192.0/19	45426	0.70%	13118 ASN-YARTELECOM PJSC Rostelecom,RU
7	131.131.98.0/24	44287	0.68%	10859 COMPUTER-SCIENCES-CORP-NTIS - Computer Sciences Corp - NTIS,US
8	162.253.250.0/23	41742	0.64%	55021 OTTCOLO - ottcolo inc.,CA
9	172.81.88.0/22	32037	0.49%	10493 GCN-AS - Grand Central Networks Inc.,US
10	74.201.42.0/24	24361	0.38%	10493 GCN-AS - Grand Central Networks Inc.,US
11	74.201.41.0/24	24312	0.37%	10493 GCN-AS - Grand Central Networks Inc.,US
12	64.34.125.0/24	20156	0.31%	22059Reserved AS-,ZZ
13	76.191.107.0/24	19345	0.30%	22059Reserved AS-,ZZ
14	155.133.79.0/24	17902	0.28%	200671 SKOK-JAWORZNO SKOK Jaworzno,PL
15	197.216.41.0/24	14130	0.22%	11259 ANGOLATELECOM,AO
16	168.128.73.0/24	14096	0.22%	132084 OPSOURCE-AP 5201 Great America Pkwy # 120,AU
17	185.78.104.0/24	11776		34341 NCEM Namvaran Consulting Engineers and Managers,IR
18	213.109.33.0/24	10451	0.16%	35745 PROVECTOR-AS KSU Provector Mariusz Dziakowicz,PL
19	202.41.70.0/24	9849	0.15%	2697 ERX-ERNET-AS Education and Research Network,IN
20	94.73.56.0/21	8870	0.14%	42081 SPEEDY-NET-AS Speedy net AD,BG
21	202.41.83.0/24	8615	0.13%	2697 ERX-ERNET-AS Education and Research Network,IN
22	196.216.241.0/24	8257	0.13%	37348 CAC,EG
23	62.140.96.0/19	7654	0.12%	36992 ETISALAT-MISR,EG
24	67.61.206.0/24	7403	0.11%	11492 CABLEONE - CABLE ONE, INC.,US
25	62.114.104.0/21	7379	0.11%	36992 ETISALAT-MISR,EG
26	62.114.224.0/20	7376	0.11%	36992 ETISALAT-MISR,EG
27	62.114.128.0/21	7365	0.11%	36992 ETISALAT-MISR,EG
28	62.114.200.0/21	7362	0.11%	36992 ETISALAT-MISR,EG
29	62.114.112.0/21	7359	0.11%	36992 ETISALAT-MISR,EG
30	62.114.96.0/21	7357	0.11%	36992 ETISALAT-MISR,EG
31	62.114.160.0/21	7341	0.11%	36992 ETISALAT-MISR.EG

â O

Aggregation Potential

(source: bgp.potaroo.net)

Aggregation Summary

- Aggregation on the Internet could be MUCH better
 - 35% saving on Internet routing table size is quite feasible
 - Tools are available
 - Commands on the routers are not hard
 - CIDR-Report webpage

Receiving Prefixes

Receiving Prefixes

- There are three scenarios for receiving prefixes from other ASNs
 - Customer talking BGP
 - Peer talking BGP
 - Upstream/Transit talking BGP
- Each has different filtering requirements and need to be considered separately

Receiving Prefixes: From Customers

- ISPs should only accept prefixes which have been assigned or allocated to their downstream customer
- If ISP has assigned address space to its customer, then the customer IS entitled to announce it back to his ISP
- If the ISP has NOT assigned address space to its customer, then:
 - Check the five RIR databases to see if this address space really has been assigned to the customer
 - The tool: whois -h jwhois.apnic.net x.x.x.0/24
 - (jwhois queries all RIR databases)

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

```
$ whois -h jwhois.apnic.net 202.12.29.0
```

inetnum: 202.12.28.0 - 202.12.29.255

netname: APNIC-AP

descr: Asia Pacific Network Information Centre

descr: Regional Internet Registry for the Asia-Pacific

descr: 6 Cordelia Street

descr: South Brisbane, QLD 4101

descr: Australia

country: AU

admin-c: AIC1-AP Portable – means its an

tech-c: NO4-AP assignment to the customer, the customer can announce it to you

mnt-irt: IRT-APNIC-AP

changed: hm-changed@apnic.net

status: ASSIGNED PORTABLE

changed: hm-changed@apnic.net 20110309

source: APNIC

Receiving Prefixes: From Customers

Example use of whois to check if customer is entitled to announce address space:

\$ whois -h whois.ripe.net 193.128.0.0

inetnum: 193.128.0.0 - 193.133.255.255

netname: UK-PIPEX-193-128-133

descr: Verizon UK Limited

country: GB

org: ORG-UA24-RIPE

admin-c: WERT1-RIPE

tech-c: UPHM1-RIPE

status: ALLOCATED UNSPECIFIED

remarks: Please send abuse notification to abuse@uk.uu.net

mnt-by: RIPE-NCC-HM-MNT

mnt-lower: AS1849-MNT

mnt-routes: AS1849-MNT

mnt-routes: WCOM-EMEA-RICE-MNT

mnt-irt: IRT-MCI-GB

source: RIPE # Filtered

166

ALLOCATED - means that this is

space and can only be announced by the ISP holding the allocation

Provider Aggregatable address

(in this case Verizon UK)

Receiving Prefixes: From Peers

- A peer is an ISP with whom you agree to exchange prefixes you originate into the Internet routing table
 - Prefixes you accept from a peer are only those they have indicated they will announce
 - Prefixes you announce to your peer are only those you have indicated you will announce

Receiving Prefixes: From Peers

- Agreeing what each will announce to the other:
 - Exchange of e-mail documentation as part of the peering agreement, and then ongoing updates

OR

 Use of the Internet Routing Registry and configuration tools such as the IRRToolSet

https://github.com/irrtoolset/irrtoolset

Receiving Prefixes: From Upstream/Transit Provider

- Upstream/Transit Provider is an ISP who you pay to give you transit to the WHOLE Internet
- Receiving prefixes from them is not desirable unless really necessary
 - Traffic Engineering see BGP Multihoming Presentations
- Ask upstream/transit provider to either:
 - originate a default-routeOR
 - announce one prefix you can use as default

Receiving Prefixes: From Upstream/Transit Provider

- If necessary to receive prefixes from any provider, care is required.
 - Don't accept default (unless you need it)
 - Don't accept your own prefixes
- Special uses prefixes for IPv4 and IPv6:
 - http://www.rfc-editor.org/rfc/rfc6890.txt
- □ For IPv4:
 - Don't accept prefixes longer than /24 (?)
 - /24 was the historical class C
- □ For IPv6:
 - Don't accept prefixes longer than /48 (?)
 - □ /48 is the design minimum delegated to a site

Receiving Prefixes: From Upstream/Transit Provider

- Check Team Cymru's list of "bogons" www.team-cymru.org/Services/Bogons/http.html
- For IPv4 also consult: www.rfc-editor.org/rfc/rfc6441.txt (BCP171)
- For IPv6 also consult: www.space.net/~gert/RIPE/ipv6-filters.html
- Bogon Route Server:

www.team-cymru.org/Services/Bogons/routeserver.html

 Supplies a BGP feed (IPv4 and/or IPv6) of address blocks which should not appear in the BGP table

Receiving IPv4 Prefixes

```
deny 0.0.0.0/0
                               ! Default
deny 0.0.0.0/8 to /32
                               ! RFC1122 local host
deny 10.0.0.0/8 to /32
                               ! RFC1918
deny 100.64.0.0/10 to /32
                               ! RFC6598 shared address
deny 127.0.0.0/8 to /32
                               ! Loopback
deny 169.254.0.0/16 to /32
                               ! Auto-config
deny 172.16.0.0/12 to /32
                               ! RFC1918
                               ! RFC6598 IETF protocol
deny 192.0.0.0/24 to /32
deny 192.0.2.0/24 to /32
                               ! TEST1
                               ! RFC1918
deny 192.168.0.0/16 to /32
deny 198.18.0.0/15 to /32
                               ! Benchmarking
deny 198.51.100.0/24 to /32
                               ! TEST2
deny 203.0.113.0/24 to /32
                              ! TEST3
deny 224.0.0.0/3 to /32
                        ! Multicast & Experimental
deny 0.0.0.0/0 from /25 to /32 ! Prefixes >/24
deny subnets of your own address space
permit everything else
```

Receiving IPv6 Prefixes

```
permit 64:ff9b::/96
                         ! RFC6052 v4v6trans
permit 2001::/32
                         ! Teredo
deny 2001::/23 to /128
                        ! RFC2928 IETF protocol
deny 2001:2::/48 to /128
                        ! Benchmarking
deny 2001:10::/28 to /128
                        ! ORCHID
deny 2001:db8::/32 to /128
                         ! Documentation
permit 2002::/16
                         ! 6to4 aggregate
deny 2002::/16 to /128
                         ! 6to4 subnets
deny 3ffe::/16 to /128
                         ! Old 6bone
deny subnets of your own address block
deny ::/0 to /128
                         ! Deny everything else
```

Receiving Prefixes

- Paying attention to prefixes received from customers, peers and transit providers assists with:
 - The integrity of the local network
 - The integrity of the Internet
- Responsibility of all ISPs to be good Internet citizens

Configuration Tips

Of passwords, tricks and templates

iBGP and IGPs Reminder!

- Make sure loopback is configured on router
 - iBGP between loopbacks, NOT real interfaces
- Make sure IGP carries loopback IPv4 /32 and IPv6 /128 address
- Consider the DMZ nets:
 - Use unnumbered interfaces?
 - Use next-hop-self on iBGP neighbours
 - Or carry the DMZ IPv4 /30s and IPv6 /127s in the iBGP
 - Basically keep the DMZ nets out of the IGP!

iBGP: Next-hop-self

- BGP speaker announces external network to iBGP peers using router's local address (loopback) as next-hop
- Used by many ISPs on edge routers
 - Preferable to carrying DMZ point-to-point addresses in the IGP
 - Reduces size of IGP to just core infrastructure
 - Alternative to using unnumbered interfaces
 - Helps scale network
 - Many ISPs consider this "best practice"

Limiting AS Path Length

- Some BGP implementations have problems with long AS_PATHS
 - Memory corruption
 - Memory fragmentation
- Even using AS_PATH prepends, it is not normal to see more than 20 ASes in a typical AS_PATH in the Internet today
 - The Internet is around 5 ASes deep on average
 - Largest AS_PATH is usually 16-20 ASNs

Limiting AS Path Length

- Some announcements have ridiculous lengths of AS-paths
 - This example is an error in one IPv6 implementation

This example shows 100 prepends (for no obvious reason)

```
*>i193.105.15.0

2516 3257 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 50404 504
```

If your implementation supports it, consider limiting the maximum AS-path length you will accept

BGP Maximum Prefix Tracking

- Allow configuration of the maximum number of prefixes a BGP router will receive from a peer
 - Supported by good BGP implementations
- Usually have two level control for prefix count:
 - Reaches warning threshold: log a warning message
 - Threshold is configurable
 - Reaches maximum:
 - Only send warnings
 - Tear down BGP, manual intervention required to restart
 - Tear down BPG and automatically restart after a delay (configurable)

BGP TTL "hack"

- Implement RFC5082 on BGP peerings
 - (Generalised TTL Security Mechanism)
 - Neighbour sets TTL to 255
 - Local router expects TTL of incoming BGP packets to be
 254
 - No one apart from directly attached devices can send BGP packets which arrive with TTL of 254, so any possible attack by a remote miscreant is dropped due to TTL mismatch

BGP TTL "hack"

- TTL Hack:
 - Both neighbours must agree to use the feature
 - TTL check is much easier to perform than MD5
 - (Called BTSH BGP TTL Security Hack)
- Provides "security" for BGP sessions
 - In addition to packet filters of course
 - MD5 should still be used for messages which slip through the TTL hack
 - See https://www.nanog.org/meetings/nanog27/ presentations/meyer.pdf for more details

Templates

- Good practice to configure templates for everything
 - Vendor defaults tend not to be optimal or even very useful for ISPs
 - ISPs create their own defaults by using configuration templates
- eBGP and iBGP examples follow
 - Also see Team Cymru's BGP templates
 - http://www.team-cymru.org/ReadingRoom/ Documents/

iBGP Template Example

- iBGP between loopbacks!
- Next-hop-self
 - Keep DMZ and external point-to-point out of IGP
- Always send communities in iBGP
 - Otherwise accidents will happen
 - (Default on some vendor implementations, optional on others)
- Hardwire BGP to version 4
 - Yes, this is being paranoid!
 - Prevents accidental configuration of version 3 BGP still supported in some implementations

iBGP Template Example continued

- Use passwords on iBGP session
 - Not being paranoid, VERY necessary
 - It's a secret shared between you and your peer
 - If arriving packets don't have the correct MD5 hash, they are ignored
 - Helps defeat miscreants who wish to attack BGP sessions
- Powerful preventative tool, especially when combined with filters and the TTL "hack"

eBGP Template Example

- BGP damping
 - Do NOT use it unless you understand the impact
 - Do NOT use the vendor defaults without thinking
- Remove private ASes from announcements
 - Common omission today
- Use extensive filters, with "backup"
 - Use as-path filters to backup prefix filters
 - Keep policy language for implementing policy, rather than basic filtering
- Use password agreed between you and peer on eBGP session

eBGP Template Example continued

- Use maximum-prefix tracking
 - Router will warn you if there are sudden increases in BGP table size, bringing down eBGP if desired
- Limit maximum as-path length inbound
- Log changes of neighbour state
 - ...and monitor those logs!
- Make BGP admin distance higher than that of any IGP
 - Otherwise prefixes heard from outside your network could override your IGP!!

Summary

- Use configuration templates
- Standardise the configuration
- Be aware of standard "tricks" to avoid compromise of the BGP session
- Anything to make your life easier, network less prone to errors, network more likely to scale
- It's all about scaling if your network won't scale, then it won't be successful

BGP Techniques for Network Operators

Philip Smith
<philip@nsrc.org>
SANOG 27
25th-27th January 2016
Kathmandu