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History of Networking

● Blackbox networking equipments
● Big name companies building switching/routing devices
● Includes Proprietary/OEM Silicon Chip
● Wrapped up with a closed source Operating System (e.g. A

desktop PC with MS Windows and MS Office)



Disadvantages of Current Scenario

Technology was not designed keeping today in mind
○ Massive Scalability
○ Multi Tenant Networks
○ Virtualization
○ Cloud Computing
○ Mobility (Users/Devices/VM)



Disadvantages of Current Scenario(Contd)

Protocols are Box Centric; Not Fabric Centric
• Difficult to configure correctly(consistency)
• Difficult to add new features(upgrades)
• Difficult to debug(look at all devices)



Disadvantages of Current Scenario(Contd)

Closed Systems (Vendor Hardware)
• Stuck with given interfaces (CLI, SNMP, etc.) 
• Hard to meaningfully collaborate
• Vendors hesitant to open up
• No way to add new features by yourself

ANSWER: Software Defined Networking



What is SDN?

SDN is a framework to allow network administrators to
automatically and dynamically manage and control a large
number of network devices, services, topology, traffic paths,
and packet handling (quality of service) policies using high-
level languages and APIs. Management includes
provisioning, operating, monitoring, optimizing, and
managing FCAPS (fault, configuration, accounting,
performance, and security) in a multi-tenant environment.



Networking Planes

• Data Plane
• Carries Network User Traffic

• Control Plane
• Carries Signaling Traffic

• Management Plane
• Carries Administrative Traffic



SDN Architecture



Need for SDN - Virtualization

Use network resource 
• without worrying about where it is physically located
• how much it is
• how it is organized



Need for SDN - Orchestration

Should be able to control and manage thousands of devices
with one command



Need for SDN - Programmable

Should be able to change behavior on the fly



Need for SDN - Dynamic Scaling

Should be able to change size, quantity, capacity



Need for SDN - Automation

• To lower OpEx 
• Minimize manual involvement
• Troubleshooting
• Reduce downtime
• Policy enforcement
• Provisioning/Re-provisioning/Segmentation of resources
• Add new workloads, sites, devices, and resources



Need for SDN - Visibility

Monitor resources, connectivity



Need for SDN - Performance

Optimize network device utilization
• Traffic engineering/Bandwidth management
• Capacity optimization
• Load balancing
• High utilization
• Fast failure handling



Need for SDN - Multi Tenancy

Tenants need complete control over their 
• Addresses
• Topology
• Routing
• Security



Need for SDN - Service Integration

Provisioned on demand and placed appropriately on the
traffic path
• Load balancers
• Firewalls
• Intrusion Detection Systems (IDS)



Alternative APIs

• Southbound APIs: XMPP (Juniper), OnePK (Cisco)
• Northbound APIs: I2RS, I2AEX, ALTO
• Overlay: VxLAN, TRILL, LISP, STT, NVO3, PWE3, L2VPN,

L3VPN
• Configuration API: NETCONF
• Controller: PCE, ForCES



History

Feb, 2011 - OpenFlow 1.1 Released
Dec, 2011 - OpenFlow 1.2 Released
Feb, 2012 - “Floodlight” Project Announced
Apr, 2012 - Google announces at ONF
Jul, 2012 - Vmware acquires Nicira
Apr, 2013 - “OpenDaylight” Released



Hardware Internals
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Internals of SDN

• Southbound API: decouples the switch hardware from control function
– Data plane from control plane

• Switch Operating System: exposes switch hardware primitives
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How SDN Works
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Implications of SDN
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Implications of SDN(Cont)
Current Networking SDN Enabled Environment
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• Distributed protocols
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• Hard to achieve optimal

solution
• Network configured indirectly

• Configure protocols
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• Allows automation
• Allows definition of new interfaces
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The SDN Stack
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Dimensions of SDN Environments:
Vendor Devices

Vertical Stacks

• Vendor bundles switch and
switch OS
• Restricted to vendor OS and

vendor interface

• Low operational overhead
• One stop shop

Whitebox Networking

• Vendor provides hardware with
no switch OS
• Switch OS provided by third

party
• Flexibility in picking OS

• High operational overhead
• Must deal with multiple vendors



Dimensions of SDN Environments:
Switch Hardware

Virtual: Overlay
• Pure software implementation

• Assumes programmable virtual switches
• Run in Hypervisor or in the OS
• Larger Flow Table entries (more memory and CPU)

• Backward compatible
• Physical switches run traditional protocols

• Traffic sent in tunnels
• Lack of visibility into physical network

Physical: Underlay
• Fine grained control and visibility into network
• Assumes specialized hardware

• Limited Flow Table entries



Dimensions of SDN Environments: 
Southbound Interface

OpenFlow

• Flexible matching
• L2, L3, VLAN, MPLS

• Flexible actions
• Encapsulation: IP-in-IP
• Address rewriting: 

• IP address
• Mac address

BGP/XMPP/IS-IS/NetConf

• Limited matching
• IS-IS: L3
• BGP+MPLS: L3+MPLS

• Limited actions
• L3/l2 forwarding
• Encapsulation



Dimensions of SDN Environments:
Controller Types

Modular Controllers

• Application code manipulates forwarding
rules
• E.g. OpenDaylight, Floodlight

• Written in imperative languages
• Java, C++, Python

• Dominant controller style

High Level Controllers
• Application code specifies declarative policies

• E.g. Frenetic, McNettle

• Application code is verifiable
• Amendable to formal verification

• Written in functional languages
• Nettle, OCamal



• Controller Type
• Modular: Floodlight

• Southbound API:
OpenFlow
• OpenFlow 1.3

• SDN Device: Whitebox
•  (indigo)

• SDN Flavor
• Underlay+Overlay

Ecosystem : BigSwitch



• Controller Type
• Modular: OpenContrail

• Southbound API:
XMPP/NetConf
• BGP+MPLS

• SDN Device: Vertical Stack
• Propriety Junos

• SDN Flavor
• Overlay

Ecosystem : Juniper
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OpenFlow

• Developed in Stanford
• Standardized by Open Networking Foundation (ONF)
• Current Version 1.4

• Version implemented by switch vendors: 1.3

• Allows control of underlay + overlay
• Overlay switches: OpenVSwitch/Indigo-light

PC



How SDN Works: OpenFlow
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OpenFlow: Anatomy of a Flow Table Entry
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Examples
Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
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IP
Prot

TCP
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TCP
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Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3
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ID

IP
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IP
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Examples
Routing

*
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*
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Data Path (Hardware)

Control Path OpenFlow

OpenFlow Controller

OpenFlow Protocol
(SSL/TCP)

38

OpenFlow: How it works
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OpenFlow: Anatomy of a Flow Table Entry



SDN Components : Hardwares

OpenFlow Compliant (1.0-1.4) Switch
• HP 8200 ZL, 6600, 6200ZL
• Brocade 5400ZL, 3500
• IBM NetIron
• Juniper OCX1100
• Baremetal Switch 
• OpenVSwitch



SDN Components : Controllers

•OpenFlow Compliant (1.0-1.4) Controller
• POX: (Python) Pox as a general SDN controller that supports

OpenFlow. It has a high-level SDN API including a queriable
topology graph and support for virtualization.
• IRIS: (Java) a Resursive SDN Openflow Controller created by

IRIS Research Team of ETRI. 
•MUL: (C) MūL, is an openflow (SDN) controller. 
• NOX: (C++/Python) NOX was the first OpenFlow controller.



SDN Components : Controllers (Contd)

• Jaxon: (Java) Jaxon is a NOX-dependent Java-based OpenFlow
Controller.
• Trema: (C/Ruby) Trema is a full-stack framework for

developing OpenFlow controllers in Ruby and C.
• Beacon: (Java) Beacon is a Java-based controller that

supports both event-based and threaded operation.
•ovs-controller (C) Trivial reference controller packaged with

Open vSwitch.



SDN Components : Controllers (Contd)

• Floodlight: (Java) The Floodlight controller is Java-based
OpenFlow Controller. It was forked from the Beacon
controller, originally developed by David Erickson at Stanford.
•Maestro: (Java) Maestro is an OpenFlow "operating system"

for orchestrating network control applications.
•NodeFlow (JavaScript) NodeFlow is an OpenFlow controller

written in pure JavaScript for Node.JS.
• NDDI - OESS: OESS is an application to configure and control

OpenFlow Enabled switches through a very simple and user
friendly User Interface.
• Ryu: (Python) Ryu is an open-sourced Network Operating

System (NOS) that supports OpenFlow.



SDN Components : Controllers (Contd)

• NDDI - OESS: OESS is an application to configure and control
OpenFlow Enabled switches through a very simple and user
friendly User Interface.
• Ryu: (Python) Ryu is an open-sourced Network Operating

System (NOS) that supports OpenFlow.



Demonstration Lab



Objectives

• Basics of running Mininet in a virtual machine. 
• Mininet facilitates creating and manipulating Software Defined Networking

components. 
• Explore OpenFlow

•An open interface for controlling the network elements through their
forwarding tables. 

• Experience with the platforms and debugging tools most
useful for developing network control applications on
OpenFlow.
• Run the Ryu controller with a sample application
• Use various commands to gain experience with OpenFlow

control of OpenvSwitch



Objectives (Contd)

• Run the Ryu controller with a sample application
• Use various commands to gain experience with OpenFlow

control of OpenvSwitch



Topology

• Three hosts named h1, h2 and h3 respectively. Each host has an
Ethernet interface called h1-eth0, h2-eth0 and h3-eth0
respectively.
• Three hosts are connected through a switch names s1. The switch

s1 has three ports named s1-eth1, s1-eth2 and s1-eth3. 
• The controller is connected on the loopback interface (in real life

this may or may not be the case, it means the switch and
controller are built in a single box). The controller is identified as
c0 and connected through port 6633.



Topology Diagram

C0 - Controller

Switch H.W

S1 Switch

OpenFlow

H1 – h1-eth0

H2 – h2-eth0

H3 – h3-eth0

S1-eth2

S1-eth1

S1-eth0



RYU Openflow controller

Ensure that no other controller is present
root@mininet-vm:~# killall controller
controller: no process found
root@mininet-vm:~#
Note that 'controller' is a simple OpenFlow reference controller
implementation in linux. We want to
ensure that this is not running before we start our own
controller.



RYU Openflow controller(Cont)
Clear all mininet components
root@mininet-vm:~# mn -c
*** Removing excess controllers/ofprotocols/ofdatapaths/pings/noxes
killall controller ofprotocol ofdatapath ping nox_core lt-nox_core ovs-
openflowd
ovs-controller udpbwtest mnexec ivs 2> /dev/null
killall -9 controller ofprotocol ofdatapath ping nox_core lt-nox_core
ovsopenflowd
ovs-controller udpbwtest mnexec ivs 2> /dev/null
pkill -9 -f "sudo mnexec"
*** Removing junk from /tmp
rm -f /tmp/vconn* /tmp/vlogs* /tmp/*.out /tmp/*.log
*** Removing old X11 tunnels
*** Removing excess kernel datapaths
ps ax | egrep -o 'dp[0-9]+' | sed 's/dp/nl:/'
*** Removing OVS datapathsovs-vsctl --timeout=1 list-br
ovs-vsctl del-br s1
ovs-vsctl del-br s2
ovs-vsctl del-br s3
ovs-vsctl del-br s4
*** Removing all links of the pattern foo-ethX
ip link show | egrep -o '(\w+-eth\w+)'
*** Cleanup complete.



RYU Openflow controller(Cont)
Start the Ryu controller
root@mininet-vm:~# ryu-manager --verbose ./simple_switch_13.py
loading app ./simple_switch_13.py
loading app ryu.controller.ofp_handler
instantiating app ./simple_switch_13.py of SimpleSwitch13
instantiating app ryu.controller.ofp_handler of OFPHandler
BRICK SimpleSwitch13
CONSUMES EventOFPSwitchFeatures
CONSUMES EventOFPPacketIn
BRICK ofp_event
PROVIDES EventOFPSwitchFeatures TO {'SimpleSwitch13': set(['config'])}
PROVIDES EventOFPPacketIn TO {'SimpleSwitch13': set(['main'])}
CONSUMES EventOFPHello
CONSUMES EventOFPErrorMsg
CONSUMES EventOFPEchoRequest
CONSUMES EventOFPPortDescStatsReply
CONSUMES EventOFPSwitchFeatures
Understanding simple_switch.py



SDN vs OpenFlow

• Leading SDN protocol

• Decouples control and data plane by giving a controller the

ability to install flow rules on switches(Bare Metal)

• Hardware or software switches can use OpenFlow

• Spec driven by ONF



MiniNet Environment

root@mininet-vm:~# mn --topo=tree,1,3 --mac --controller=remote --switch
ovsk,protocols=OpenFlow13
*** Creating network
*** Adding controller
*** Adding hosts:
h1 h2 h3
*** Adding switches:
s1
*** Adding links:
(h1, s1) (h2, s1) (h3, s1)
*** Configuring hosts
h1 h2 h3
*** Starting controller
*** Starting 1 switches
s1
*** Starting CLI:
mininet>



MiniNet Environment(Cont)

Monitor controller to ensure that the switch connects
connected socket:<eventlet.greenio.GreenSocket object at 0xa986c0c>
address: ('127.0.0.1', 42733)
connected socket:<eventlet.greenio.GreenSocket object at 0xa986cec>
address: ('127.0.0.1', 42734)
hello ev <ryu.controller.ofp_event.EventOFPHello object at 0xa9897ac>
move onto config mode
EVENT ofp_event->SimpleSwitch13 EventOFPSwitchFeatures
switch features ev version: 0x4 msg_type 0x6 xid 0xb15cb575
OFPSwitchFeatures(auxiliary_id=0,capabilities=71,datapath_id=1,n_buffers
=256,n_tables=254)
move onto main mode



MiniNet Environment(Cont)

Dump flows on switch s1
mininet> dpctl dump-flows -O OpenFlow13
*** s1 -----------------------------------------
OFPST_FLOW reply (OF1.3) (xid=0x2):
cookie=0x0, duration=2.481s, table=0,
n_packets=0, n_bytes=0, priority=0
actions=FLOOD,CONTROLLER:64
mininet>



MiniNet Environment(Cont)

Passing Packets
mininet> h1 ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_req=1 ttl=64 time=5.10 ms
64 bytes from 10.0.0.2: icmp_req=2 ttl=64 time=0.238 ms
64 bytes from 10.0.0.2: icmp_req=3 ttl=64 time=0.052 ms
64 bytes from 10.0.0.2: icmp_req=4 ttl=64 time=0.051 ms
^C
--- 10.0.0.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3001ms
rtt min/avg/max/mdev = 0.051/1.360/5.100/2.160 ms
mininet>



Controller Environment

Monitor new messages in the controller window
EVENT ofp_event->SimpleSwitch13 EventOFPPacketIn
EVENT ofp_event->SimpleSwitch13 EventOFPPacketIn
packet in from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 on dpid 1
associate 00:00:00:00:00:01 with port 1 on dpid 1
packet in from 00:00:00:00:00:02 port 2 to 00:00:00:00:00:01 on dpid 1
associate 00:00:00:00:00:02 with port 2 on dpid 1
add unicast flow from 00:00:00:00:00:02 port 2 to 00:00:00:00:00:01 port 1 on dpid 1
EVENT ofp_event->SimpleSwitch13 EventOFPPacketIn
packet in from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 on dpid 1
add unicast flow from 00:00:00:00:00:01 port 1 to 00:00:00:00:00:02 port 2 on dpid 1



Mininet Environment

Dump flows again to view differences
mininet> dpctl dump-flows -O OpenFlow13
*** s1 ------------------------------------------------------------------------
OFPST_FLOW reply (OF1.3) (xid=0x2): 
cookie=0x0, duration=38.044s, table=0, n_packets=0, n_bytes=0,
priority=10,in_port=1,dl_src=00:00:00:00:00:01,dl_dst=ff:ff:ff:ff:ff:ff actions=ALL
cookie=0x0, duration=37.044s, table=0, n_packets=3, n_bytes=238,
priority=100,in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02 actions=output:2
cookie=0x0, duration=38.043s, table=0, n_packets=0, n_bytes=0,
priority=10,in_port=2,dl_src=00:00:00:00:00:02,dl_dst=ff:ff:ff:ff:ff:ff actions=ALL
cookie=0x0, duration=38.043s, table=0, n_packets=4, n_bytes=336,
priority=100,in_port=2,dl_src=00:00:00:00:00:02,dl_dst=00:00:00:00:00:01 actions=output:1
cookie=0x0, duration=38.043s, table=0, n_packets=0, n_bytes=0,
priority=5,in_port=2,dl_src=00:00:00:00:00:02,dl_type=0x88cc actions=drop 
cookie=0x0, duration=38.043s, table=0, n_packets=0, n_bytes=0,
priority=5,in_port=1,dl_src=00:00:00:00:00:01,dl_type=0x88cc actions=drop
cookie=0x0, duration=38.043s, table=0, n_packets=0, n_bytes=0,
priority=10,in_port=2,dl_src=00:00:00:00:00:02,dl_dst=01:00:00:00:00:00/01:00:00
:00:00:00 actions=ALL
cookie=0x0, duration=38.044s, table=0, n_packets=0, n_bytes=0,
priority=10,in_port=1,dl_src=00:00:00:00:00:01,dl_dst=01:00:00:00:00:00/01:00:00
:00:00:00 actions=ALL
cookie=0x0, duration=73.001s, table=0, n_packets=3, n_bytes=294, priority=0
actions=FLOOD,CONTROLLER:64



Mininet Environment

Running a high bandwidth flow
mininet> iperf
*** Iperf: testing TCP bandwidth between
h1 and h2
Waiting for iperf to start up...***
Results: ['5.52 Gbits/sec', '5.52
Gbits/sec']
mininet>



Mininet Environment

Dump flows to see the flows which match
mininet> dpctl dump-flows -O OpenFlow13
*** s1
------------------------------------------------------------------------
OFPST_FLOW reply (OF1.3) (xid=0x2):
...
cookie=0x0, duration=209.485s, table=0, n_packets=2384026,
n_bytes=3609389036,
priority=100,in_port=1,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:0a
actions=output:10
...
cookie=0x0, duration=209.485s, table=0, n_packets=27163,
n_bytes=1792770,
priority=100,in_port=10,dl_src=00:00:00:00:00:0a,dl_dst=00:00:00:00:00:0
1 actions=output:1
...
cookie=0x0, duration=392.419s, table=0, n_packets=150, n_bytes=11868,
priority=0 actions=FLOOD,CONTROLLER:6



Refereces

1. Mininet/Openflow Tutorials – Dean Pemberton
2. SDN – The Next Wave of Networking – Siva Valiappan



Questions
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