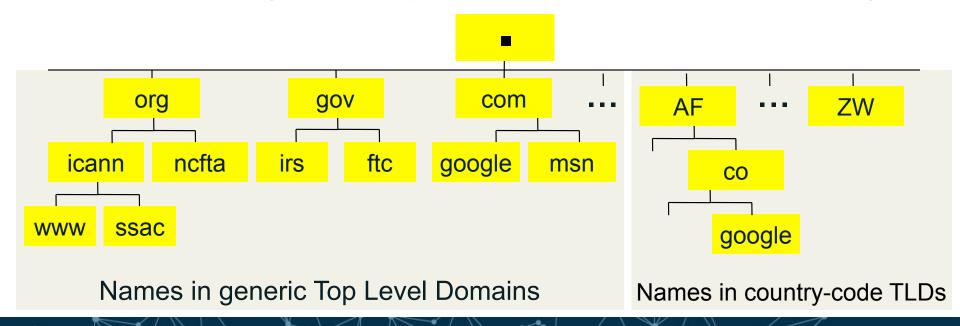


DNS operations and ccTLD management

Champika Wijayatunga | SANOG28 Mumbai - India | 1-9 August 2016

The World's Network – the Domain Name System

- + Internet Protocol numbers are unique addresses that allow computers to find one another
- + The Domain Name System matches IP numbers with a name
- + DNS is the underpinning of unified Internet
- + DNS keeps Internet secure, stable and interoperable
- + ICANN was formed in 1998 to coordinate DNS


History

1983	DNS was designed/invented by Paul Mockapetris (RFC882 & 883)
1984	Berkeley Internet Name Domain (BIND) Server developed Original Seven Generic TLDs (.com, .edu, .gov, .int, .mil, .net, and .org)
1985 1986 1987	First country codes assigned .us, .uk, and .il .au, .de, .fi, .fr, .jp, .kr, .nl and .se RFC1034 (Considered the first full DNS Specification)
	Country Code TLDs continue to be added
2000	Seven new TLDs added (.aero, .coop, .museum, .biz, .info, .name, and .pro)
2012	New round of applications for gTLDs opened by ICANN

DNS Structure

- A domain is a node in the Internet name space
 - A domain includes all its descendants
- Domains have names
 - Top-level domain (TLD) names are generic or country-specific
 - TLD registries administer domains in the top-level
 - TLD registries delegate labels beneath their top level delegation

What do the Root-Server Operators do?

- Copy a very small database, the content of which is currently decided by IANA
- Put that database in the servers called 'Root Servers.
- Make the data available to all Internet users
- Work stems from a common agreement about the technical basis
 - Everyone on the Internet should have equal access to the data
 - The entire root system should be as stable and responsive as possible

What do the Root-Server Operators do not do?

- Interfere with the content of the database
 - E.g. run the printing presses, but don't write the book
- Make policy decisions
 - Who runs TLDs, or which domains are in them
 - What systems TLDs use, or how they are connected to the Internet

Who are the Root Server operators?

- Not "one group", 12 distinct operators
- Operational and technical cooperation
- Participate in RSSAC as advisory body to ICANN
- High level of trust among operators
 - Show up at many technical meetings, including IETF,
 ICANN, RIR meetings, NOG meetings, APRICOT etc.

How Secure are the Root Servers?

- Physically protected
- Tested operational procedures
- Experienced, professional, trusted staff
- Defense against major operational threat i.e. DDoS.
 - Anycast
 - Setting up identical copies of existing servers
 - Same IP address
 - Exactly the same data.
 - Standard Internet routing will bring the queries to the nearest server
 - Provides better service to more users.

Root Servers

Avoiding Common Misconceptions

- Not all internet traffic goes through a root server
- Not every DNS query is handled by a root server
- Root servers are not managed by volunteers as a hobby
 - Professionally managed and well funded
- No single organization(neither commercial nor governmental) controls the entire system
- The "A" server is not special.
- Root Server Operators don't administrate the zone content
 - They publish the IANA-approved data

Root Server Operation @ICANN

- ICANN is the L-Root Operator
- + L-Root nodes keep Internet traffic local and resolve queries faster
- Make it easier to isolate attacks
- Reduce congestion on international bandwidth
- Redundancy and load balancing with multiple instances

L-Root presence

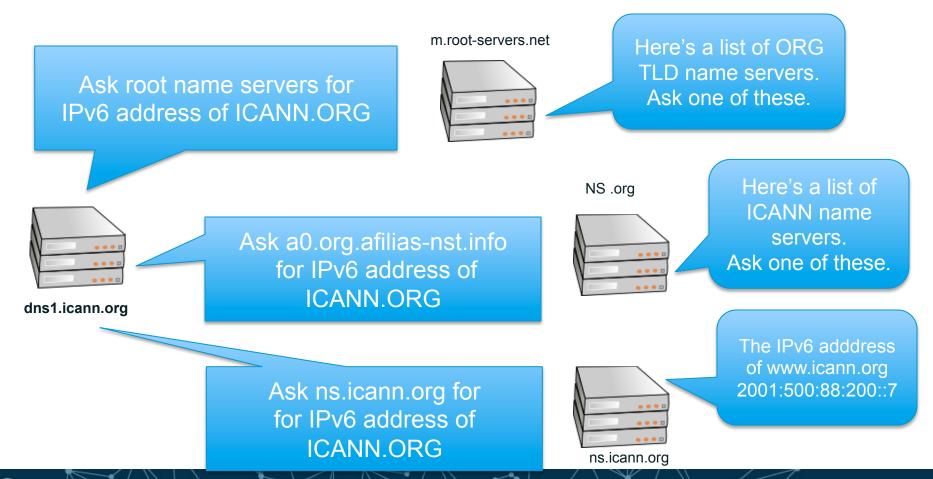
L-Root presence

- +Geographical diversity via Anycast
 - +Around 160 dedicated servers
 - +Presence on every continent
- +On normal basis 15 ~ 25 kqps
 - +That is app 2 billion DNS queries a day
- +Interested in hosting a L-Root
 - + Contact your ICANN Global Stakeholder Engagement Representative

DNS Servers

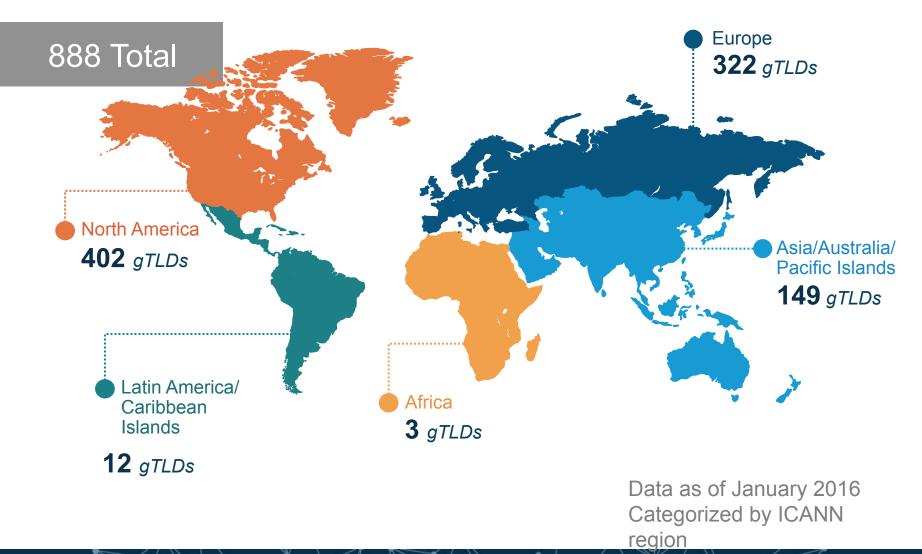
- DNS is a distributed database
- Types of DNS servers
 - DNS Authoritative
 - Primary (Master)
 - Secondary (Slaves)
 - DNS Resolver
 - Recursive
 - Cache
 - Stub resolver

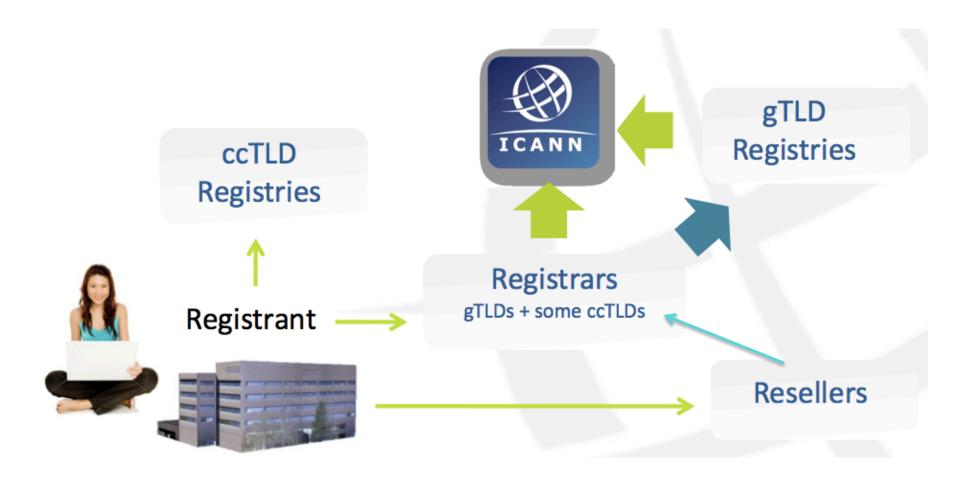
Operational elements of the DNS


- Authoritative Name Servers host zone data
 - The set of "DNS data" that the registrant publishes
- Recursive Name Resolvers ("resolvers")
 - Systems that find answers to queries for DNS data
- Caching resolvers
 - Recursive resolvers that not only find answers but also store answers locally for "TTL" period of time
- Client or "stub" resolvers
 - Software in applications, mobile apps or operating systems that query the DNS and process responses

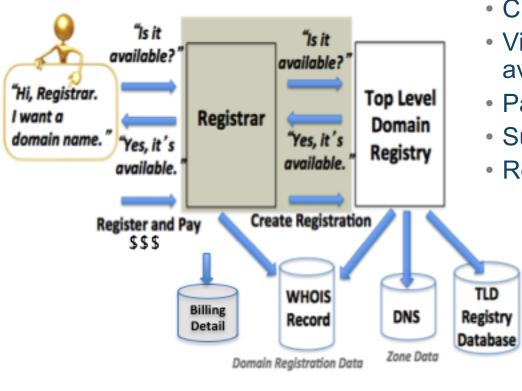
Domain name "directory assistance"

How does a resolver find the IP address of ICANN.ORG?


Resolvers find answers by asking questions iteratively



Regional Distribution of Delegated gTLDs



The Registry/Registrar Ecosystem

Domain Name Registration

How to register a domain:

- Choose a string e.g., example
- Visit a registrar to check string availability in a TLD
- Pay a fee to register the name
- Submit registration information
- Registrar and registries manage:
 - "string" + TLD(managed in registry DB)
 - Contacts, DNS (managed in Whois)
 - DNS, status (managed in Whois DBs)
 - Payment information

DNS Resource Records (RR)

- Unit of data in the Domain Name System
- Define attributes for a domain name

Label	TTL	Class	Type	RData
www	3600	IN	A	192.168.0.1

- Most common types of RR
 - o A
 - o AAAA
 - o NS
 - 。 SOA
 - \circ MX
 - CNAME

What is a DNS zone data?

- DNS zone data are hosted at an authoritative name server
 - Each "cut" has zone data (root, TLD, delegations)
- DNS zones contain resource records that describe
 - name servers,
 - IP addresses,
 - Hosts,
 - Services
 - Cryptographic keys & signatures...

```
86400; 24 hours could have been written as 24h or 1d
 $TTL used for all RRs without explicit TTL value
SORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw : expire
                     3h ; minimum
                                            ; NS in the domain bailiwick
                         nsl.example.com.
                         ns2.smokeyjoe.com.; NS external to domain
             IN MX 10 mail.another.com. ; external mail provider
 Sender policy framework with hard fail
 Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
 server host definitions
                         192.168.0.1
                                            :name server definition
             IN A
                         192,168,0,2
                                            ;web server definition
 web and ftp server on same address
ftp
                 CNAME www.example.com.
                                            ;ftp server definition
 endpoint or non server domain hosts
mikeslaptop
                         192.168.0.3
fredsipad
             IN A
                         192.168.0.4
```

Only US ASCII-7 letters, digits, and hyphens can be used as zone data.

In a zone, IDNs strings begin with XN--

Common DNS Resource Records

```
86400 ; 24 hours could have been written as 24h or 1d
; $TTL used for all RRs without explicit TTL value
$ORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw ; expire
                     3h ; minimum
                                          ; NS in the domain bailiwick
                         nsl.example.com.
                         ns2.smokeyjoe.com.; NS external to domain
              IN MX 10 mail.another.com. ; external mail provider
; Sender policy framework with hard fail
; Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
: server host definitions
                                            ; name server definition
             IN A
                         192.168.0.1
nsl
                         192,168,0,2
                                            :web server definition
; web and ftp server on same address
ftp
              IN CNAME www.example.com.
                                            ;ftp server definition
 endpoint or non server domain hosts
                         192.168.0.3
mikeslaptop
              IN A
fredsipad
              IN A
                         192.168.0.4
```

Time to live (TTL)

- How long RRs are accurate
 Start of Authority (SOA) RR
- Source: zone created here
- Administrator's email
- Revision number of zone file

Name Server (NS)

- IN (Internet)
- Name of authoritative server

Mail Server (MX)

- IN (Internet)
- Name of mail server

Sender Policy Framework (TXT)

Authorized mail senders

Common DNS Resource Records

```
86400; 24 hours could have been written as 24h or 1d
; $TTL used for all RRs without explicit TTL value
$ORIGIN example.com.
             IN SOA nsl.example.com. hostmaster.example.com. (
                     2002022401 ; serial
                     3H : refresh
                     15; retry
                     lw ; expire
                     3h ; minimum
                                          ; NS in the domain bailiwick
             IN NS
                        nsl.example.com.
                        ns2.smokeyjoe.com.; NS external to domain
                 MX 10 mail.another.com. ; external mail provider
; Sender policy framework with hard fail
 Use A and MX resource records for verification and google too
example.com. IN TXT "v=spf1 a mx include:google.com ~all"
; server host definitions
                                            ; name server definition
             IN A
                        192.168.0.1
             TN A
                        192,168,0,2
                                            ;web server definition
; web and ftp server on same address
ftp
             IN CNAME www.example.com.
                                          ;ftp server definition
; endpoint or non server domain hosts
                        192.168.0.3
mikeslaptop
             IN A
fredsipad
              IN A
                        192.168.0.4
```

Name server address record

- NS1 (name server name)
- IN (Internet)
- A (IPv4) * AAAA is IPv6
- IPv4 address (192.168.0.1)

Web server address record

- www (world wide web)
- IN (Internet)
- A (IPv4) * AAAA is IPv6
 IPv4 address (192.168.0.2)

File server address record

- FTP (file transfer protocol)
- IN (Internet)
- CNAME means "same address spaces and numbers as www"

Designation of codes

 ccTLDs are given a DNS string based on the Alpha-2 codes within ISO-3166

http://www.iso.org/iso/home/standards/country_codes.htm

Standard: ISO 3166 - Codes for the representation of names of countries and their subdivisions

Committee: ISO/TC 46 ICS: 01.140.30

Alpha-2 code IN This code is part of collection(s) INDIA Short name Online collection: Country codes Short name lower case **Full name** the Republic of India IND Alpha-3 code Numeric code 356 Remarks Yes Independent Andaman Islands, Laccadive Islands, Minicoy Island, Nicobar Islands, Amindivi Islands Territory name Status Officially assigned Remark part 1 Includes: Amindivi Islands, Andaman Islands, Laccadive Islands, Minicoy Island, Nicobar Islands. Remark: the forms used in the list are English-language forms provided by India. Remark part 2 Remark part 3 Sikkim (SK, SKM, --) is now part of the entry for India.

ccTLD as a Public Trust

- ccTLDs are designated to operators who would operate them in the best interests of the local communities they served
- Operators should strive to tailor operations to best serve the users:
 - Ensure minimum technical standards are met
 - Strive to meet best practices
 - Operate with policy that suits local requirements

Who Currently Operate ccTLDs

- Many of the ccTLDs were assigned in the 1980's.
- They tended to be assigned to whoever was involved in building the Internet in a specific country
- Some changed hands over the years

What types of organisations?

- Universities
- ISPs/Telcos
- Regulators
- Dedicated entities

http://www.iana.org/domains/root/db

What do I mean by "ccTLD policies"

- Anything that defines how and by whom names can be registered.
- Typically ccTLDs have no contract with ICANN and are bound by local rather than ICANN policies
- Can participate in global discussion through ICANN's ccNSO
 - http://ccnso.icann.org

There is no ONE model for ccTLDs

- Different models work well in different environments.
- This is driven by many things including operational considerations on the ground, local business practices and local culture.
- Policy and operations of a ccTLDs are often built over time and reflect the local environment.

Who should decide the policies

- Whoever has the role of Sponsoring organisation has the role of ensuring that policies are developed and implemented.
- Many ccTLDs have a model that follow a multistakeholder Solution.
- This can take many forms from formal "Policy boards" to processes for gathering public input.
- Often inclusive of Government, Industry and Civil Society as well as registrants

Some discussions

Which model?

Direct registration

No middle man - easier to control most aspects of Registration

Registry-registrar model

- Requires an interface between registry and registrar
- Offloads end-user interface from registry

Both

Some discussions

Scope of Registrations?

Local or Global?

There are examples of ccTLDs of both types decide which best serves the community

- Consider that the legal implications are different
- Consider that the risks are different

Some discussions

Dispute Resolution:

Ensure that local law prevails?

You don't want to be arguing in foreign courts

Alternate Dispute Resolution (ADR)?

Design to be lightweight!

UDRP is often used as a base model

http://www.icann.org/udrp/udrp.htm

Some discussions

Who runs the technical operations?

This is really a business decision.

Policy can define the type of organisation but business decisions should guide the actual choice.

Technology choices

These are generally operational matters.

The important factor to ensure that the "operator" is bound by the policies created and that choices they make meet those requirements.

Outsourcing

- There are an increasing number of companies that will provide services to TLD managers.
 - Whole registry back-end providers
 - Authoritative name server providers
- ccTLD managers should understand the basics of how to run the services themselves before they outsource them.
 - Allows you to manage and monitor performance of suppliers
 - Have a back-up strategy! What if your supplier fails?

Technical Requirements for a TLD

- Networks and Servers (redundant)
- Back office systems.
- Physical and Electronic Security
- Quality of Service (24/ 7 availability!)
- Name Servers
- DNS software (BIND, NSD, etc.)
- Registry software
- Diagnostic tools (ping, traceroute, zonecheck, dig)
- Registry Registrar Protocol

Name Server Considerations

- Support technical standards
- Handle load multiple times the measured peak
- Diverse bandwidth to support above
- Must answer authoritatively
- Turn off recursion!
- Should "NOT" block access from a valid Internet hosts

Secondary name server choice

Diversity, diversity and diversity!

- Don't place all on the same LAN/building/segment
- Network diversity
- Geographical diversity
- Institutional diversity
- Software and hardware diversity

Security, Stability & Resliency Considerations

- Physical security
 - Deploy stringent access controls
 - Fire detection and retardation
 - Other environmental sensors (Flood, Humidity etc.)
 - ▶ Power continuity for 48 hours (or more)
- Backups
 - Multiple secure copies locally and offsite
 - ▶ Test, test and test!!

Separations of Services

- Registries generally start small and evolve
- Separation of services means separating the logical functions and elements of the registry
- Two key benefits:
 - SECURITY: Clear separation of services is a manner in which to create logical security zones
 - SCALABILITY: You can scale only the services that need to grow as they need to grow

Know your SLAs

- Functioning name servers are the most critical/visible service
- All other services also need to be considered
 - Billing
 - Whois server, webservers
 - Registrar APIs
- Consider your service level targets and how you will meet them
- DNS servers always on, other systems mostly on?

When it all goes wrong

- DNS is a known target for hackers.
- You will be targeted at some point!
- Have plans in place to deal with attacks, failures and disasters.
- Test those plans regularly!

