OSPF Security: Attacks and Defenses

Manjul Khandelwal
(manjul@nivettisystems.com)
Ramakrishna DTV
(ramakrishnadtv@nivettisystems.com)

www.nivettisystems.com
Objective

Various attacks targeted at OSPF, their mitigations, and best practices for network based on OSPF

Focus: Important and recently reported attacks
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attacks
 - Compromised router attacks
- Best practices
- Q&A
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attacks
 - Compromised router attacks
- Best practices
- Q&A
OSPF

- IETF recommended standard for IGP
- Most commonly used IGP in enterprises and ISP networks
OSPF
Security strengths of OSPF

- Bidirectional links
- Cryptographic authentication
- Fight-back
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attacks
 - Compromised router attacks
- Best practices
- Q&A
Goals of attackers

- Get access to needed information
 - But don't want to get detected
- Cause needed damage (DOS)
Consequences of attacks

- Eavesdropping (Man-in-the-middle)
- Black holes
- Delay
- Loops
- Partition
- Congestion in the network
- Delayed or no convergence of routing tables
- Resource shortages on the routers etc
- Reported in [draft-ietf-rpsec-ospf-vuln-02]
Attackers

- Remote attackers
- Compromised routers
Remote Attackers

- Administrators consider this an important attack scenario
- Devote their attention to it
 - Implement mitigation measures
Compromised routers

- Many administrators do not devote attention to this attack and consider it as having negligible probability
- Some consider it as possible but do not worry about further consequences
 - Their logic: Router compromise is such a big issue in itself that further issues are not worth worrying about
Our view on Compromised routers

- You should consider threat of compromised routers and their further consequences
Reason – Compromised routers

- Routers can be fully compromised
 - Routers have bugs and there are attacks where routers may be compromised
 - Reported in [Persistent]
Reasons – Why worry about OSPF attacks from a compromised router?

- Is a compromised router's locus of control limited to itself?
- OSPF attacks can be a mechanism to extend the sphere of control of the compromised router
 - e.g., controlling the LSAs of another router
- OSPF attacks work as a force-multiplier to a compromised router
Do you know whether your router(s) are compromised?

- How do you find out?
- Attackers do not want to reveal that a machine is compromised
- Greater threat because of their ability to go undetected
- Have you checked your routers for compromise of late?
- Are the vendors providing mechanisms for this check?
Identifying compromised routers

- How do you come to realize that a router is actually compromised?
- Further consequences may make you aware that a router is compromised
 - e.g., Repeated fight-back attempts may indicate a mis-configured, buggy, or a compromised router in your network
Reasons – Is it an attacker or a bug?

- Compromised router is a good model of
 - Malicious attacker
 - Software bugs
 - Hardware bugs
 - Misconfiguration

- Examples
 - MaxAge
 - [Jiniao] reports an insider attacker sending MaxAge maliciously
 - [Draft-dong-ospf-maxage-flush-problem] considers MaxAge issues seen because of hardware or software bugs
Bottom line

OSPF attacks from compromised router are important
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attacks
 - Compromised router attacks
- Best practices
- Q&A
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attackers
 - Compromised router attacks
- Best practices
- Q&A
Remote attackers (Part 1)

- Remote attackers not inside your routing domain launching attacks
- Attacks made possible by misconfiguration
Remote attackers (Part 1)
Remote attackers (Part 1) - Mitigation

- Check for misconfiguration on client facing links
- Use “passive” where required
Remote attackers (Part 1)

Demonstration
Remote attackers (Part 2)

- Remote attackers not inside your routing domain launching attacks
- Normally assumes NULL authentication or cracked crypto keys
Remote attackers (Part 2)
Remote attackers (Part 2) - Mitigation

- RPF
 - Reverse path forwarding check for spoofed source IP addresses at boundary of domain
- TTL Security
 - Very powerful and efficient mitigation mechanism
Agenda

- Brief Introduction to OSPF
- Attackers, Goals and Consequences
- Various types of attacks and their mitigation
 - Remote attacks
 - Compromised router attacks
- Best practices
- Q&A
Compromised Routers

- Send false information in its own LSAs
- Shutdown itself
- Repeatedly issue new LSAs
- Leads to network churn
 - Routing table re-computation
 - Flooding of LSA
Compromised Routers
Mitigations

- Keep a tab on number of SPF runs
 - OspfSpfRuns in OSPF MIB
Compromised router masquerading as ASBR

- Masquerade as an ASBR
- It allows a router to introduce External LSAs in the OSPF domain
- Attacker sends external LSAs making itself the best choice

Consequences
- Disrupt traffic destined outside AS
- Make itself Man-in-the-middle

Reported in [draft-ietf-rpsec-ospf-vuln-02]
Mitigation

- NMS should check consistency between LSDB and intended configuration of the boxes in the network
- You will notice if an unintended ASBR is in the network
Limitations

Sphere of influence limited
MaxAge LSAs

- A malicious or hardware or software bug modifying LSAs to MaxAge

- Leads to network churn
 - Black-holing of related traffic
 - Routing table re-computation
 - Flooding of LSA

- Reported in [draft-dong-ospf-maxage-flush-problem-statement]
MaxAge LSAs
MaxAge LSAs - Mitigation

- If fight-back trap is available, this situation can be detected
- Remedial action can be taken after analyzing the cause
Remote false adjacency

- Assumes compromised router and same keys in the entire network or NULL keys
- Creates phantom router
- Phantom router can advertise LSAs to influence routing table
 - Black-hole traffic etc
- Reported in [Persistent]
Remote false adjacency (contd.)
Remote false adjacency - Mitigation

- Diverse keys on different networks
- Enable TTL security
Seq++ attack

- Compromised router sends an LSA for victim with a LS sequence number higher than current sequence number and fake information

- Effects
 - Influences routing tables of other routers because it is a newer LSA
 - Loops, black holing, route the traffic towards itself

- Reported in [JiNao] [draft-ietf-rpsec-ospf-vuln-02]
Seq++ attack
Seq++ attack (contd.)

- OSPF standard
 - “a router will never emit its LSAs faster than once every MinLSInterval (5 seconds)”
- Attacker floods the OSPF domain with malicious LSAs at a rate higher than one every MinLSInterval
 - Permanent changes in the routing domain
Seq++ attack - Mitigation

- On reception of fake LSA
 - Victim router fights back
- Attacking router needs to repeatedly send newer LSAs
- If fight-back traps are present
 - Large number of traps will be issued
 - Administrator may be alerted about network issue
 - Further action can be taken
Disguised-LSA

- A compromised router sends an LSA for a victim router
 - LS Sequence number and checksum are such that fight-back is not triggered
 - Better than previous attack
- Corrupts LS database
 - Influences routing table
- Reported in [Persistent]
Disguised-LSA (contd.)

[Diagram of network with labels 100, 101, 102, showing normal LSA, trigger and disguised LSA, and fight back LSA.]
Disguised-LSA - Mitigation

- Detection
 - Fight-back traps will be issued but at a lesser frequency (once half-an-hour)

- Prevention
 - Randomize OSPF LSA sequence numbers
 - Recently proposed draft
 - draft-manjuldtv-ospf-sequence-number
Persistent Poisoning

- A compromised router sends an LSA for a victim router with matching LS ID but not adv. Router ID
- Fight-back not triggered
- Routing table calculation uses the poisoned LSA rather than LSA from victim router
- Vulnerability reported as CVE-2013-0149
- Reported in [PersPoison]
Persistent Poisoning
Persistent Poisoning - Mitigation

- OSPF protocol design bug
- Vendor patch required
- Many vendors provided this
Brief Introduction to OSPF
Attackers, Goals and Consequences
Various types of attacks and their mitigation
 Remote attacks
 Compromised router attacks
Best practices
Q&A
Reference OSPF Network
Transit-Only Networks

- Based on RFC 6860
- Hides transit-only networks
- Especially useful in preventing remote attackers
- Hides prefixes of transit networks in routing tables
Transit-Only Networks (contd.)

Transit Only Networks can be configured by suppressing the prefixes. Sample configuration are shown below.

Nivetti OS
configure> modify parameter-group router traffic
Info: Parameter group instance loaded for modification.
configure> set ipv4 ospf-v2 suppress-prefixes yes
configure> save

JunOS
No references available

IOS
(config)# router ospf 10
(config-router)# network 192.16.64.0 0.0.0.255 area 0
(config-router)# prefix-suppression
Unnumbered Interfaces

- If transit-only networks are not possible then unnumbered interfaces may be used
- No host route is generated for these interfaces and no IP packets can be addressed to these interfaces.
- These interfaces are like hidden interfaces.
Unnumbered Interfaces (contd.)

Sample configuration to configure unnumbered interfaces is shown below.

Nivetti OS

```
configure> create parameter-group --force interface e10/0/2
Info: Parameter group instance loaded for modification.
configure> set enable yes
configure> set ip router “traffic”
configure> set ip ipv4 enable yes
configure> set ip ipv4 ospf-v2 enable yes
configure> save
```

JunOS

```
interfaces {
    so-6/1/0 {
        unit 0 {
            family inet;
        }
    }
}
```

IOS

```
(config)# interface Serial 0
(config-if)# ip unnumbered Ethernet 0
```
Crypto Support

- Always enable crypto as it improves security
- Bonus: They help in catching corruption caused by hardware and software bugs
 - Better than existing non-crypto checksum
 - Includes LS Age also in consideration.
 - Same IP Checksum or LSA checksum (Fletchers) is possible but not the crypto checksum.
- Are you using different keys on different LANs?
Crypto Support (contd.)

MD5 crypto support can be enabled using the following sample configuration.

Nivetti OS

```
configure> modify parameter-group interface ge/0/0/1
Info: Parameter group instance loaded for modification.
configure> set ip ipv4 ospf-v2 authentication auth-1
configure> save
configure> create parameter-group ospf-v2-authentication auth-1
configure> set type cryptographic
configure> add key 1
configure> enter key 1
configure> set algorithm keyed-md5
configure> set secret "ab$c1"
configure> save
```

JunOS

```
area 0.0.0.0 {
  interface so-0/2/0.0 {
    authentication {
      md5 5 key "$9$pXXhuIlhreWx-wQF9puBEh"; ## SECRET-DATA
    }
  }
}
```

IOS

```
(config)# interface GigabitEthernet0/0
(config-if)# ip ospf message-digest-key 1 md5 ab$c1
(config)# router ospf 10
(config-router)# area 0 authentication message-digest

!--- Message digest key with ID "1" and Key value (password) is set as "ab$c1".
```

```
(config-router)# area 0 authentication message-digest

!--- MD5 authentication is enabled for all interfaces in Area 0.
```
Crypto Support (contd.)

SHA-1 crypto support can be enabled using the following sample configuration.

Nivetti OS
configure> modify parameter-group interface ge/0/0/1
Info: Parameter group instance loaded for modification.
configure> set ip ipv4 ospf-v2 authentication auth-2
configure> save
configure> create parameter-group ospf-v2-authentication auth-2
configure> set type cryptographic
configure> add key 1
configure> enter key 1
configure> set algorithm hmac-sha-1
configure> set secret "ab$c1"
configure> save

JunOS
No reference available.

IOS
No reference available.
TTL Security

TTL Security for OSPF protocol can be enabled as shown in below sample configurations.

Nivetti OS
configure> modify parameter-group interface if-s4-p1
Info: Parameter group instance loaded for modification.
configure> set ip ipv4 ospfv2 ttl-security enable
configure> save

JunOS
No references available

IOS
(config)#interface GigabitEthernet0/0
(config-if)#ip ospf ttl-security

Copyright © 2016 Nivetti Systems Pvt Ltd.
RPF (Anti-spoofing or Ingress Filtering)

Generally used at network ingress where symmetric routing is used. It can be enabled in various vendor configurations as shown below.

Nivetti OS
➢ Enabled at the interface level
`configure> modify parameter-group interface if-s4-p1
Info: Parameter group instance loaded for modification.
configure> set ip ipv4 reverse-path-check enable`

➢ Enabled only for ospfv2 on the interface
`configure> modify parameter-group interface if-s4-p1
Info: Parameter group instance loaded for modification.
configure> set ip ipv4 ospfv2 reverse-path-check enable`

JunOS
`interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 rpf-check
 }
 }
 }
}

IOS
(config)#interface GigabitEthernet0/0
(config-if)#ip verify unicast reverse-path`
Fight back traps/notification

- Mechanism to notify administrator that OSPF is triggering fight backs.
- Frequent notifications point to issues
- Indicates malicious entities
- Router-id misconfiguration
- Indicates partition

Nivetti OS

configure > modify parameter-group router global
Info: Parameter group instance loaded for modification.
configure > set ipv4 ospf-v2 security lsa-fightback-notification enable
configure > save

Copyright © 2016 Nivetti Systems Pvt Ltd.
LSDB Checksums

Various LSDB 32 bit checksums can be retrieved via SNMP and compared for inconsistencies.

- **OSPF-MIB: ospfExternLsaCksumSum** { ospfGeneralGroup 7 }
 External link state advertisements (LS-type 5)

- **OSPF-MIB: ospfAsLsaCksumSum** { ospfGeneralGroup 25 }
 AS-scope link state database

- **OSPF-MIB: ospfAreaLsaCksumSum** { ospfAreaEntry 8 }
 Link state advertisements in an area. Excludes external (LS type-5) link state advertisements.

These can be retrieved from multiple routers and compared using standard NMS.
OSPF consistency checker tool

- It checks consistency between LSDB as collected from various routers and intended OSPF configuration on the them.

- Tool checks
 - Checksum for LSDB synchronization across network via checksum field to see whether network partitioned.
 - Is there consistency between configured ASBRs and reporting ASBRs.
 - Etc.

- Part of Nivetti OS package. Similar tools might be available for other OEM products.
Randomized Sequence Numbers

As detailed earlier, some attacks use predictable nature

Nivetti OS
configure > modify parameter-group router global
Info: Parameter group instance loaded for modification.
configure > set ipv4 ospf-v2 security sequence-number-generation ?

normal : One up sequence number generation mechanism will be used.
random : All sequence number will be randomized in the range configured.
random-fightback : One up sequence number generation mechanism will be used for normal lsa generation but it will be randomized in the configured range for fightback lsa generation.
Others

- Mono-culture is dangerous both in agriculture and networks. Have vendor and software diversity.
- NMS should run OSPF consistency checking tool periodically. Use consistency checker tool periodically.
- RFC 7474 crypto support. Demand support for this as this avoids crypto replay attacks.
- Enable syslogs for database overflow
- Vendor plugs the vulnerabilities as and when they are reported. Upgrade to newer releases as early as feasible.
References

- RFC 6860 – Hiding Transit only networks in OSPF
- [Jinao] “Wu et al, JiNao: Design and implementation of a scalable intrusion detection system for the OSPF routing protocol, Journal of computer networks and ISDN systems”
- [Persistent] “Nakibly et al, Persistent OSPF Attacks, NDS 2012”
References

- [draft-ietf-rpsec-ospf-vuln-02] “Jones et al, OSPF security vulnerability analysis, Internet draft”
- [draft-jakma-ospf-integrity-00] “Jakma et al, Stronger, automatic integrity checks for OSPF packets, Internet draft”
- [draft-manjuldtv-ospf-sequence-number] “Manjul et al, OSPF LSA sequence number generation, 2016”
Questions?