RouteViews
What Is RouteViews

• A collaborative router looking glass to share BGP views among network operators and research.
What Is RouteViews

• A collaborative router looking glass to share BGP views among network operators and research.
• Started in 1995 at the University of Oregon, Advanced Network Technology Center (ANTC).
What Is RouteViews

- A collaborative router looking glass to share BGP views among network operators and research.
- Started in 1995 at the University of Oregon, Advanced Network Technology Center (ANTC).
- Data archives being in 1997, 19TB (compressed) today.
What Is RouteViews

• A collaborative router looking glass to share BGP views among network operators and research.
• Started in 1995 at the University of Oregon, Advanced Network Technology Center (ANTC).
• Data archives began in 1997, 19TB (compressed) today.
• Currently run by the network engineering group at the University of Oregon
RouteViews Footprint

- Atlanta (digital realty)
- Chicago (equinix)
- Chile
- DC (eqix)
- Eugene (multihop)
- Johannesburg (jinx, napafrica)
- London (linx)
- Miami (flix)
- Nairobi (kixp)
- Palo Alto (paix)
- Perth (waix)
- Portland (nwax)
- Sao Paulo (ix.br x2)
- San Francisco (sfmix)
- Singapore (equinix sg)
- Serbia (sox)
- Sydney (equinix)
- Tokyo (dix-ie)
RouteViews Peering Stats

- Peering Sessions: 549
- Unique ASes: 221
- Detailed peering info can be found at http://www.routeviews.org/peers/peering-status.html
Infrastructure
Hardware
• Off the shelf server hardware
 • 8-16 Cores
 • 32G-64G Ram
 • 400GB-1TB SSD
• ASR 1004

Software
• OpenSource Software
 • Linux/Centos
• Routing Suites
 • Quagga – bgpd
 • FRR – bgpd
 • Gobgp
• IOS XE
Collector Operations

- Multi-Hop
 - Pros:
 - If you can reach the collector, you can peer.
 - Cons:
 - Multi-hop peerings are subject to the routing anomalies RouteViews seeks to observe and archive.

- IX
 - Pros:
 - Better positioned to address multi-hop issues.
 - Geographic diversity.
 - Peering diversity.
 - Scalable.
 - Cons:
 - More infrastructure to manage.
Collector Data

• Multi-Threaded Routing Toolkit (MRT)
 • MRT provides a standard for dumping routing information to a binary file.
 • RouteViews dumps consist of BGP RIBs and UPDATEs.
 • RIBs are dumped every 2 hours.
 • UPDATEs are dumped every 15 minutes.
Data Access

• MRT files are bzipped and rsynced back to http://archive.routeviews.org/ on a regular basis.
• They can be access via, http, ftp and rsync.
MRT Tools

• RIPE libbpgdump, UCLA BGP Parser, NTT bgpdump2, etc.
 • https://bitbucket.org/ripencc/bgpdump/wiki/Home
 • https://github.com/cawka/bgpparser
 • https://github.com/yasuhiro-ohara-ntt/bgpdump2
 • https://github.com/t2mune/mrtparse (python)
 • https://github.com/rfc1036/zebra-dump-parser (perl)
How can I access a collector

- telnet://route-views*.routeviews.org
 - No username necessary.
 - Users are able to run show commands, e.g. show ip bgp x.x.x.x/x.

Gotchas

- Why not SSH?!
 - RouteViews data is publicly available. We’ve got nothing to hide.
 - This would conflict with management of the box
- show ip route x.x.x.x next-hop is incorrect!
 - Remember, this is a collector. There’s no data-plane, thus no true FIB, only the default route seen by the kernel.
RouteViews Use Cases

• Operations
 • BGP is the backbone of the Global Routing System.
RouteViews Use Cases

• Operations
 • BGP is the backbone of the Global Routing System.
 • To ensure it's stability, the GRS needs to be constantly monitored.
RouteViews Use Cases

• Network Operations
 • BGP is the backbone of the Global Routing System.
 • To ensure it's stability, the GRS needs to be constantly monitored.
 • RouteViews provides:
 • Command-Line/ Looking Glass
 • Prefix Visibility, Verify Convergence, Path Stability
 • Comparing Local/Regional/Global Views
 • Troubleshooting Reachability
RouteViews Use Cases

• Research
 • BGP anomalies and dynamics are critical as well.
RouteViews Use Cases

• Research
 • BGP anomalies and dynamics are critical as well.
 • RouteViews Provides:
 • Network Topology Monitoring
 • Route Leaks/Hi-Jacks (ex. https://cyclops.cs.ucla.edu)
 • Network Optimization
 • Growth, Aggregation, etc. In AS/V4/V6
 • Address Provenance
RouteViews Use Cases

- Research
 - BGP anomalies and dynamics are critical as well.
 - RouteViews Provides:
 - Network Topology Monitoring
 - Route Leaks/Hi-Jacks (ex. https://cyclops.cs.ucla.edu)
 - Network Optimization
 - Growth, Aggregation, etc. In AS/V4/V6
 - Address Provenance

- A great deal of research has been published using RouteViews data
 - Example 1
 - Example 2
Evolution of BGP Data Distribution

- 1st Generation Characteristics (Current)
 - File-Based storage, MRT data format
Evolution of BGP Data Distribution

• 1st Generation Characteristics (Current)
 • File-Based storage, MRT data format
 • Asynchronous
Evolution of BGP Data Distribution

• 1st Generation Characteristics (Current)
 • File-Based storage, MRT data format
 • Asynchronous
 • Manual retrieval, sequencing, and consolidation
Evolution of BGP Data Distribution

• 1st Generation Characteristics (Current)
 • File-Based storage, MRT data format
 • Asynchronous
 • Manual retrieval, sequencing, and consolidation
 • No post-processing
Evolution of BGP Data Distribution

• 1st Generation Characteristics (Current)
 • File-Based storage, MRT data format
 • Asynchronous
 • Manual retrieval, sequencing, and consolidation
 • No post-processing
 • Centralized model
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
 • RESTful interfaces
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
 • RESTful interfaces
 • Real-time streaming telemetry
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
 • RESTful interfaces
 • Real-time streaming telemetry
 • Middle-layer abstraction, multi-client access (facilitates analysis and services)
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
 • RESTful interfaces
 • Real-time streaming telemetry
 • Middle-layer abstraction, multi-client access (facilitates analysis and services)
 • Flexible deployment model
Evolution of BGP Data Distribution

• 2nd Generation Characteristics (Soon)
 • “Message-based” data distribution, per-message timestamps, with meta-data
 • Automated consolidating and sequencing
 • Database storage and access
 • RESTful interfaces
 • Real-time streaming telemetry
 • Middle-layer abstraction, multi-client access (facilitates analysis and services)
 • Flexible deployment model

• New feature will enable better monitoring and open up new avenues of research.
Next Steps: BMP and openBMP

• BGP Monitoring Protocol (BMP)
 • https://tools.ietf.org/html/rfc7854
 • Available now – Cisco, Juniper, (FRR coming soon)
• In addition to MRT attributes BMPs adds
 • Start, Stop, Peer Up, Peer Down
 • Collector Identification
 • Statistics
Next Steps: BMP and openBMP

• BMP is the IETF standard for BGP monitoring
• OpenBMPd is OpenSource (part of the Linux Foundation)
 • Consolidates peers/collectors
 • Splits collector, peer and update messages into separate streams
• Apache Kafka comprises the message bus for openbmp
 • Addresses producer/consumer problems
 • Proven to scale
 • Mature client API
 • Clients in 16 different programming languages.
OpenBMP Architecture
BMP Tools

• Languages:
 • https://cwiki.apache.org/confluence/display/KAFKA/Clients
Potential Issues

• OpenBMP Issues
 • Where to filter?
 • Where to select?
 • Which distribution pipeline works best.
 • Adj-RIB-in, Adj-RIB-out: no pre-policy/post-policy controls
 • Analytics/Notification tools still Scarce

• RouteViews Issues
 • Live-Data Peering/Data-Sharing Policy?
 • Live-Data Peer Selection—how many/which peers?
 • Cloud Development
 • Cloud Integration/Access — allowing remote sites to contribute