

Terraform – Introduction

What is Terraform?

● Terraform is a tool to manage and describe infrastructure
● Terraform is *AAS agnostic

– It supports many providers for various types of infrastructure
– You can add your own extensions
– It does not provide an abstraction layer on top

Why use terraform?

● Terraform is intended to support anything which offers an API
● It supports

– Virtual machines
● Openstack, Digital Rebar, The Foreman, CoreOS, …

– Networking
● SDN, NFV
● Cisco ACI, UCS
● F5 Load balancers
● …

– Monitoring (Icinga2)
– …
– See https://www.terraform.io/docs/providers/index.html for details

● Terraform catches infrastructure configuration drift

https://www.terraform.io/docs/providers/index.html

Syntax

● Terraform comes with it’s own DSL
– Custom language (Hashicorp Configuration Language/HCL)

● HCL is declarative
– You describe what you want
– This has limitations(*)

● Supports basic data types
– Booleans
– Strings
– Arrays
– Maps/Hashes/Key-Value pairs

Filesystem layout

● Terraform will load all files with names ending in ‘.tf’
● A file named ‘main.tf’ is mandatory
● A module named foo:

– ./foo/main.tf

 /variables.tf
 /outputs.tf

Resources

Terraform works primarily with resources

A resource describes a single logical component of
infrastructure and is identified by the “type” + “name” pair
resource “type” “name” {

key = value
key {

key = value
key { … }

}
}

Parameters

● Resources can accept parameters, which allows for some
deduplication of code.
– Staging vs production instances for example

variable “disk” {
default = 500
description = “Default disk size in GB”

}

resource "google_compute_instance_template" "instance_template" {
disk {

disk_size_gb = “${var.disk}”
}

}

Modules
A module is a collection of resources

module “foo” {
source = ./resource
param = ...

}

module “staging_host” {
source = ./host
disk = 10

}
module “testing_host” {

source = ./host
disk = 200

}
module “production_host” {

source = ./host
}

Outputs

● Terraform modules can provide outputs
– These can be referenced by other resources
– They are useful in building dependency trees

State

● Terraform maintains global state for a system
– This includes all resources managed by Terraform
– This is effectively a CMDB with dependencies listed

● Terraform state defaults to being local
– For people in teams, shared state is recommended

● Unless you can guarantee only one user at a time

● It is possible to store state remotely

Backends

● Remote state is stored using a “backend”
● Most backends support state locking
● This is extremely useful when storing common state between

modules (outputs, networks and the like)

terraform {
 backend "gcs" {
 prefix = "my-awesome-project"
 }
}

provider "google" {
 credentials = "${file("../../account.json")}"
 region = "europe-west1"
 project = "my-awesome-project"
}

Data sources and local variables

● Data sources allow data to be fetched or computed for use
elsewhere in Terraform configuration.

● Locals act as local variables
data "terraform_remote_state" "department" {
 backend = "gcs"
 config {
 prefix = "department"
 credentials = "${var.credentials}"
 bucket = "${var.bucket}"
 encryption_key = "${var.encryption_key}"
 }
}

locals {
 subnet = "${data.terraform_remote_state.department.my_subnet}"
 subnet_project = "department"
}

Using terraform

● Terraform is provided as a single, cross-platform go binary
● Terraform workflow is roughly:

terraform init # initial setup of state and backends
terraform plan # make plan from state and local changes
terraform apply # Actual change

● Repeat the plan and apply steps each time you need to make a
configuration change

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

