

Linux 101 for network administrators
Devdas Bhagat

<devdas.b@gmail.com>

A little history

● Linux is a Unix clone
– Technically, Linux is the kernel. The userland is

GNU.
● Started by a Finnish programming student

named Linux Torvalds in 1991
● Licensed under the GPLv2

Unix design philosophy

● Small is beautiful
● Make each program do one thing well

– Do not make your code do too many things
– Factor into smaller units

● Prototype early, release often
– Real world feedback is really important

● Portability is more important than efficiency
– Computers are fast enough

Unix Design Philosophy

● Configuration lives in flat files
● Avoid captive user interfaces
● Make programs into filters

Unix design

● Kernel
– Minimum OS
– Provides abstractions over hardware and software

● Userspace
– Everything else

Basic interaction

● The Unix shell
– What people generally think of as “Unix”
– Fundamental interface to any Unix system

● Multiple options:
– /bin/sh is a standard location for a POSIX shell
– bash, csh, dash, ksh, zsh are commonly used

shells

User basics

● Two categories of users:
– root

● root is the prime administrative user account
● Normal usage MUST NEVER be done as root
● The root user prompt is usually a # for POSIX shells
● root is ALWAYS uid 0.
● All users with uid 0 have root privileges.

– Everyone else
● This is what you use for daily activities
● Normal users get $ as a prompt for their shell

Getting around

● Starting off
– $HOME
– ls
– cd
– mkdir
– touch
– rmdir
– rm
– pwd

Help!

● man
● info

– pinfo
● whatis
● whereis
● which
● The Internet!

– Your favorite search engine!
– IRC

● irc.freenode.net and irc.oftc.net are fantastic

System status

● What's happening
– w
– who
– uptime
– last
– top
– ps

Files

● Everything is a file
– Mostly

● Files are contained in filesystems.
– Filesystems are an abstraction/organisation layer on

raw storage
● Files are organised in a tree structure
● The directory separator is '/'
● '/' is also used for the root of the tree

Filesystems

● Data structures used to track files on disk
● Common fs types
● mkfs
● Key concepts

– Superblock
– inode
– Data block
– Directory block
– Indirection block

File types

● Regular files
● Directories
● Hardlinks
● Symbolic links
● Block and character devices
● Sockets (Unix, raw and IP)

Permissions, attributes and ACLs

● Unix defaults to 12 bits for permissions (see chmod(1))
– Often written in octal
– user, group, others
– 4 – read, 2 – write, 1 – execute
– 3 bits are special

● Attributes extend this to make files immutable,
append-only, etc (see chattr(1))

● ACLs can be used to grant access to only single
users/groups

Processes

● A process is a unit of execution
– A program is a file on disk
– An executing program is a process

● All processes have a parent, an owner and a group
● The owner is usually the user who started the process
● Any process without an explicit parent is a child of the

special process init with PID 1
● Daemons

Filehandles

● Any process which opens a file gets a numeric
identifier for the file.
– This is the filehandle

● There are three special filehandles for all
processes
– 0 – STDIN
– 1 – STDOUT
– 2 – STDERR

Redirecting I/O

● <
– Redirect stdin from another file

● >
– Redirect output to a file, overwriting

● >>
– Redirect output, appending

● 2>
– Redirect stderr

● 2>&1
– Redirect stderr to stdout

Chaining commands

● Use the | operator
– command1 | command2
– Generically, c1 | c2 | c3 |c4 ...

● | connects the stdout of command1 to the stdin
of command2

● Build long chains of commands incrementally

Shells for programming

● Unix shells are programming languages
● A shell script is a sequential list of commands
● The shebang line #!
● Loops

– for, select, while, until
● Compound statements

– if then [else]
– case

Variables

● Variables are untyped
● Variable names start with $ for /bin/sh

– echo $foo
– echo “This string has an embedded $variable”
– echo “This file is named ${var}txt”

● Assignment
– foo=”bar”
– file_list=`ls -1 /bin`
– file_list=$(ls -1 /bin)

Environment variables

● Some variables are set on boot, or on login.
– The totality of these variables defines the user

environment
● Common examples (use “set” to see them all):

– $PATH
– $HOME
– $UID
– $IFS

Profiles

● For bourne shells, global profiles are in
/etc/profile

● Personal overrides are configurable in
~/.bash_profile
– ~ is an alias for $HOME
– Filenames starting with a '.' are “hidden” files and

often used for configuration

Job control

● End a command with & to run it in the
background

● Use jobs to see jobs running in the background
● Use fg to bring a job to the foreground
● Use Ctrl+Z (suspend) and bg to send tasks to

the background

Task scheduling

● For a one off task, use atd
● For tasks repeated at regular intervals, use the cron

daemon (crond)
● Cron config files are found in

– /etc/crontab
– /etc/cron.*
– /etc/cron.d/*
– /var/spool/cron/* ← user crons

● Use crontab -e to edit user crons

Package management

● rpm/deb → packaging file format
● yum/dnf/apt → wrappers around rpm/deb to do

dependency management and provide features
like searching

● Always stick to one packaging format, provided by
your OS
– Programming languages provide their own package

management
– Do NOT use this on production

Building packages

● Use mock(8) to build RPMs
– In desperate cases, use fpm

● Learn to write spec files
● Python, Perl and Ruby come with modules

which will generate spec files for you

Packaging for Debian/Ubuntu

● Use sbuilder or sbuild
● Or use fpm

AAA

● Users are traditionally identified by a login
name

● Authentication is traditionally done by a
password

● Audit logging and accounting is via system logs

User information storage

● Traditionally /etc/passwd with hashed
passwords in /etc/shadow

● In larger environments, LDAP, Active Directory
and/or Kerberos are used.

● In certain cases, SSL certificates can be used
for mutual authentication, with the username in
the SSL certificate.

SSH

● Originally designed as a replacement for rsh(1)
● Encrypts data on the wire
● Supports authentication via private/public key pair

– You can use a central CA to sign keys and convert
them into certificates

● Secure file copying (scp(1))
● Can be used to tunnel other programs
● sssd(8) can look up xpublic keys in LDAP

SSH Keys

● ssh-keygen
● Use a good passphrase
● authorized_keys(5)
● ssh agent
● ssh-add

Privilege escalation

● root
– The single administrative user
– Never login or work as this user

● su
– Switch User
– Switch current context to other user.
– Needs password of other user

● sudo
– More fine-grained control of privileges
– Does not need password of other user

Syslog

● Syslog is a standard protocol for system and
network logging

● Linux has a choice of syslog daemons
– syslogd
– rsyslog

● All of these can log locally and remotely

Limitations of syslog

● Syslog runs over UDP on the network
– Syslog messages can be lost
– Syslog messages have a short message length limit

● Syslog messages get logged to files, so
searching can be difficult

● Not all applications use syslog
– Apache
– Java

ELK

● The ELK system refers to ElasticSearch,
Logstash and Kibana

● Elasticsearch is a distributed Java system for
indexing (ES is a wrapper over Lucene)

● Logstash is a log shipper which will ship flat files,
syslog and a number of other forms of messages

● Kibana is a Javascript application which is a
frontend to ElasticSearch

Editing text

● Linux offers a lot of text editors
– vi/vim
– emacs
– joe
– pico/nano
– ed

Which editor?

● This is a religious question
● vi is everywhere
● emacs is a very good editor/IDE for

programmers
● Most Linux systems will offer vim

Notes on vi

● Original Unix editor was ed – a line editor
● vi (visual) is a modal editor

– Command mode
● Move around the file

– Edit mode
● Add/change text

A quick vi cheatsheet

● <esc> - command mode
● i – Insert before cursor
● I – Insert at beginning of line
● a – append after the cursor
● A – Append to end of line
● :w <file> - write to named file (or current file)
● :q - quit

A quick vi cheatsheet

● :q! - Quit without saving
● y – Copy text
● <n> yy – Copy <n> line(s)
● yw – Copy next word
● d – delete text
● <n>dd – Delete <n> line(s)
● dw – Delete next word
● p - Paste

Networking basics

● ethtool
– Information about ethernet interfaces

● ifconfig
– Shows information about interfaces

● Deprecated, use ip instead.

● ip
– Replacement for ifconfig and route

Examples

Examples

Examples

Examples

Bridging

● Linux supports bridged interfaces (particularly
useful with virtual machines) – L2 packet
forwarding
– brctl addbr br0
– brctl addif br0 em0 em1

● Use ebtables to enable packet control based on
MAC address

Bonding

● You can bond interfaces on Linux to get higher
throughput, redundancy, or both

modprobe bonding mode=0 miimon=100 # load bonding module

ifconfig eth0 down # putting down the eth0 interface
ifconfig eth1 down # putting down the eth1 interface

changing the MAC address of the bond0 interface
ifconfig bond0 hw ether 00:11:22:33:44:55
to set ethX interfaces as slave the bond0 must have an ip.
ifconfig bond0 192.168.55.55 up

ifenslave bond0 eth0 # putting the eth0 interface in the slave mod for bond0
ifenslave bond0 eth1 # putting the eth1 interface in the slave mod for bond0

Bonding modes

● mode=0 (Balance Round Robin)
– RR per packet

● mode=1 (Active backup)
● mode=2 (Balance XOR)

– Packets to the same host go out of the same interface
● mode=3 (Broadcast)

– Transmit on both
● mode=4 (802.3ad/LACP)
● mode=5 (Balance TLB)

– Outgoing traffic balanced across interfaces based on interface speed
● mode=6 (Balance ALB)

– Balances both incoming and outgoing traffic

Pushing packets

● Between interfaces
– Set the sysctl net.ipv4.ip_forward = 1

● NAT
● Use iptables

Dynamic routing

● Use Quagga or BIRD
● Quagga consists of multiple individual daemons

– One for each protocol
– Always enable the zebra daemon

● Only zebra can assign IP addresses and static routing

● Config files
– /etc/quagga/daemons
– /etc/quagga/${protocol}.conf

● Quagga supports Cisco like commands and syntax
● Use vtysh to get a single interface to all daemons

OSPF
kmint(config)# router ospf
kmint(config-router)# router-id 5.5.5.5
kmint(config-router)# passive-interface default
kmint(config-router)# no passive-interface eth0
kmint(config-router)# no passive-interface eth1
kmint(config-router)# no passive-interface lo
kmint(config-router)# network 10.1.1.2/24 area 1
kmint(config-router)# network 10.1.2.2/24 area 1
kmint(config-router)# network 5.5.5.5/32 area 1
kmint(config-router)# end
kmint#

BGP example
!
! Zebra configuration saved from vty
! 2006/06/09 16:13:05
!
hostname bgp.example.com
password zebra
enable password zebra
log file /var/log/quagga/bgpd.log
!
router bgp 65270
 bgp router-id 192.168.27.1
 network 192.168.27.0/24
 network 192.168.254.128/30
 neighbor 192.168.254.9 remote-as 65000
 neighbor 192.168.254.130 remote-as 65120
 distance bgp 150 150 150
!
line vty

Firewalling and packet mangling

● Linux offers excellent packet filtering
capabilities using iptables

● A rule is a statement which expresses a
decision about a packet

● A chain is an ordered list of rules
● A table is a set of chains

Examples

● /sbin/iptables -t FILTER -A FORWARD -p tcp
--dport 23 -j DROP

● /sbin/iptables -t FILTER -A INPUT -p tcp --dport
53 -j ACCEPT

● /sbin/iptables -t FILTER -A INPUT -p udp -m
multiport --dports 53,123 -j ACCEPT

iptables modules

● See iptables-extensions(8)
– addrtype
– cluster
– comment
– connbytes
– connlabel
– conntrack
– ...

Traffic Control

[d.bhagat@devdas ~]$ sudo tc
Usage: tc [OPTIONS] OBJECT { COMMAND | help }
 tc [-force] [-OK] -batch filename
where OBJECT := { qdisc | class | filter | action | monitor }
 OPTIONS := { -s[tatistics] | -d[etails] | -r[aw] | -p[retty] | -b[atch] [filename] |
-n[etns] name }

● tc controls egress traffic
● You can control bandwidth per end node
● You can give preference to latency sensitive traffic

tc

● A qdisc is a system for controlling traffic
● It is possible to configure simple, classless

qdiscs or classful ones which let you classify
traffic

● tc can be used to limit buffer bloat, and ensure
that interactive traffic is not harmed by large
batch uploads/downloads

tc examples
This line sets a HTB qdisc on the root of eth0, and it specifies that the class
1:30 is used by default. It sets the name of the root as 1:, for future references.
tc qdisc add dev eth0 root handle 1: htb default 30

This creates a class called 1:1, which is direct descendant of root (the parent is
1:), this class gets assigned also an HTB qdisc, and then it sets a max rate of
6mbits, with a burst of 15k
tc class add dev eth0 parent 1: classid 1:1 htb rate 6mbit burst 15k

The previous class has this branches:

Class 1:10, which has a rate of 5mbit
tc class add dev eth0 parent 1:1 classid 1:10 htb rate 5mbit burst 15k

Class 1:20, which has a rate of 3mbit
tc class add dev eth0 parent 1:1 classid 1:20 htb rate 3mbit ceil 6mbit burst 15k

Class 1:30, which has a rate of 1kbit. This one is the default class.
tc class add dev eth0 parent 1:1 classid 1:30 htb rate 1kbit ceil 6mbit burst 15k

Intrusion Detection Systems

● Host based
– Tripwire
– AIDE
– OSSEC

● Network based
– SNORT

Monitoring and debugging

More tools

● traceroute
● tracepath
● mtr
● lsof
● smokeping
● wireshark
● netcat
● Nagios/Icinga/Opsview/Check_mk
● Riemann
● SNMP

Devops

● A culture of developers, operations, network
engineers, DBAs, security …, all working
together to improve business.

● CAMS
– Culture
– Automation
– Measurement
– Sharing

Configuration Management

● Hosts should be sheep, not pets
● Configuration management software is expected to make

hosts with the same role alike
– Puppet
– Chef
– Salt
– Cfengine

● Orchestration software makes sequential changes on
different hosts
– Ansible

CfgMgmt

● Promises
– A system will get to a given state
– Trust based on past performance
– Policy based management

● Modeling
– Humans should not express the process to get to a

given state. They should just say what the final
state needs to be.

CMDB

● The CMDB is the single source of truth for your
entire IT system

● Configuration management MUST derive
information from the CMDB

● The CMDB does not express policy

Change management

● Make small, frequent changes
– Large changes carry higher risks
– Make rollbacks easier

● Use a version control tool
– git, bzr, hg, svn, …

● Code reviews
– gerrit

Writing good commit messages

Header line: explain the commit in one line (use the imperative)

Body of commit message is a few lines of text, explaining things
in more detail, possibly giving some background about the issue
being fixed, etc etc.

The body of the commit message can be several paragraphs, and
please do proper word-wrap and keep columns shorter than about
74 characters or so. That way "git log" will show things
nicely even when it's indented.

Make sure you explain your solution and why you're doing what you're
doing, as opposed to describing what you're doing. Reviewers and your
future self can read the patch, but might not understand why a
particular solution was implemented.

Advanced topics
● Programming

– Perl, Python, Ruby, ...
● Databases

– PostgreSQL, MySQL, ...
● Security
● DNS

– BIND, PowerDNS, Knot, DNSSEC, DNSCurve, dnsdist, ...
● Email

– Postfix, Sendmail, Exim, Courier, Cyrus IMAP, Dovecot, spam...
● Web

– Apache, nginx, varnish, squid, ...
● Distributed filesystems

– NFS, CEPH, GlusterFS, …
● Key-Value stores

– Consul, Kubernetes, ...
● Secrets

– Vault, …
● Virtualisation, Containers, ...

References

● http://shop.oreilly.com/product/9780596154493.do

● http://shop.oreilly.com/product/9781593273897.do

● http://shop.oreilly.com/product/9781565922259.do

● http://books.cat-v.org/computer-science/unix-programming-environment/

● http://books.cat-v.org/computer-science/unix-programming-environment/

● https://www.amazon.com/Unix-Network-Programming-Vol-
Networking/dp/B000OIAXBY

● https://www.amazon.com/UNIX-Network-Programming-Interprocess-
Communications/dp/0132974290

● https://www.amazon.com/TCP-Illustrated-Protocols-Addison-Wesley-
Professional/dp/0321336313

● https://www.amazon.com/TCP-IP-Illustrated-Implementation-Vol/dp/020163354X

References

● https://www.amazon.com/Design-UNIX-Operating-System/dp/0132017997

● https://www.amazon.com/UNIX-Programming-Addison-Wesley-Professional-
Computng/dp/0131429019

● https://www.amazon.com/Elements-Programming-Style-2nd/dp/0070342075

● http://www.opsschool.org/

● https://www.fprintf.net/vimCheatSheet.html

● http://vim.rtorr.com/

● http://www.brendangregg.com/linuxperf.html

● http://www.brendangregg.com/books.html

● https://code.fb.com/security/scalable-and-secure-access-with-ssh/

References

● www.lartc.org/lartc.html

● https://wiki.quagga.net/wiki/index.php/ConfigurationExamples

● https://cyruslab.net/2012/05/12/configuration-examples-with-
quagga/

● http://bird.network.cz/?get_doc&f=bird-3.html

● https://wiki.archlinux.org/index.php/Advanced_traffic_control

● http://www.linuxhorizon.ro/bonding.html

● https://wiki.debian.org/BridgeNetworkConnections

● https://blog.chef.io/2010/07/16/what-devops-means-to-me/

References

● http://riemann.io/

● https://www.nagios.org/

● http://graphite.readthedocs.io/en/latest/

● http://grafana.org/

● https://www.elastic.co/

● https://www.digitalocean.com/community/tutorials/an-
introduction-to-selinux-on-centos-7-part-1-basic-concepts

● https://wiki.centos.org/HowTos/SELinux

References

● http://chris.beams.io/posts/git-commit/

● http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

● https://www.git-scm.com/book/en/v2/Distributed-Git-Contributing-to-a-
Project#Commit-Guidelines

● https://github.com/torvalds/subsurface/blob/master/README#L82-109

● https://puppet.com/

● https://www.chef.io/

● https://saltstack.com/

● https://www.ansible.com/

● http://www.ntop.org/

● https://www.terraform.io/

References

● https://git-scm.com/

● https://www.mercurial-scm.org/

● http://bazaar.canonical.com/en/

● https://www.gerritcodereview.com/

● http://shop.oreilly.com/product/0636920039846.do

● https://artofmonitoring.com

● https://snort.org/

● https://nmap.org/

● http://nc110.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

