
Programming and Python for
Network Engineer

Muhammad Yasir Shamim

APNIC Community Trainer

Hafsa Talat

Software Engineer

Agenda

2

Session 3:

• Network Integration with Python

• GNS3 DEMO

• Telnet

• Netmiko

• Napalm

• Use Case

• Thinking Process

• Python Code

• Python for Network Engineers

• Closing remarks

Session 1:

• Tedious Networking Operations

• Network Operational Problems

• Evolution Drift to DevOps

• Programming to rescue

• Why learn Programming

• Programming in Networks

• Orchestration vs Automation

• Automation A Smart way out

• Types of Languages

• Languages for Automation

Session 2:

• Which programming language should we learn

• Why Python

• What is Python

• Python and other languages

• Getting started with Python

• Installing Python

• Python programming modes

• Deeper into python

Tedious Networking Operations

• Vendor dependent command line syntax and structures

• Follow Standard Operating Procedures for tasks

• Low level operational works

• Daily chores drain out technical ability of an Engineer

• Maintenance of manual databases of many non-tech entities

• Learning theoretical network concepts to perform troubleshooting of seldom issues

3

Network Operational Problems

• Daily repetitive tasks

• Highly time consuming operations

• Fat fingers and mistakes

• Infrastructure scaling

• Difficulty of understanding complex scenarios by less
technical team members

4

Evolutional Drift to DevOps

• Software-defined networks using centralized controllers

• Introduction of GUI and replacing CLI legacy

• Inclusion of DevOps is changing networking infrastructure rapidly

• Era of cloud computing and mobility, businesses are demanding more
agility from their IT professionals

• Addition of programming skillset in bucket

5

Programming to the Rescue

• Networker Engineers no longer need to learn all the different syntax
from diverse vendors, codes can do that !

• Predefined code, eliminates the need to follow long configuration
steps

• Scalability of networks, adding new operational nodes to the
networks in just few clicks.

• Zero tolerance to humanistic errors

• Routine network operations made easy for all

• One window solution for all operational tasks

6

Innovate

Automate

Enhance

Why learn Programming

• If software eats everything, are network engineers on the menu?

• An Essential Skill For Network Engineers to enhance his capabilities.

• Programming to simplify or automate tasks.

• Programming languages are not just for programmers. If you are a
network engineer, knowing a programming language (or two or
three) can come in handy.

7

Programming

Logic
Building

Productivity

EfficiencyCreativity

Problem
Solving

Innovate Automate Enhance

• Manages network more efficiently.

• Network Automation.

• Software define networking.

• Big vendors heading towards software based operations
i.e. Cisco, Juniper.

8

Programming in Networks

• Automation

• Well specified task run on its own

• Orchestration

• Automating a lot of things at once

• Multiple tasks to execute a workflow

• Is automation, coordination and management

• Automation is the first step towards orchestration

9

Orchestration vs Automation

Scenario – Network Engineer needs to configure Customer link

What information Network Engineer is looking for:

Last mile configuration (Metro Fiber)

Free switch interface

Free vlan

Configuring the Router

Interface (vlan)

IP required (Public/Private)

Bandwidth

Each individual tasks can be automated, and the whole process is orchestrated
10

Orchestration vs Automation

“Automation” A Smart Way Out !

• Network Automation is a methodology in which programmed scripts automatically configures, provisions,
manages and tests network devices

• Why Automation? - Programmed management tools are designed to reduce the complexity of manually
configuring and managing distributed infrastructure resources by enabling speed, ensuring reliability and
compliance

• Using different programming languages provide different paths to achieve a common goal of managing
infrastructure efficiently

11

Improved
efficiency

Human
Error

Repetitive
Process

Increase
Productivity

Security

Languages For Automation

• Strong binding between Network Automation Tools and Programming
languages.

• Puppet, Chef and Ansible are different paths to achieve a common
goal of managing infrastructure efficiently.

• All these configuration management tools are designed to reduce the
complexity of configuring distributed infrastructure resources,
enabling speed, ensuring reliability and compliance.

12

Ansible •Python

CHEF •Ruby

PUPPET •Ruby

Which Programming Language should we learn

13

Which
Language ?

Market
demands !

What People
are available

Size of
Community

Technical
Online

Resources

User
Friendly

Easy
Learning

Type of Languages

• Frontend development is the practice of converting data to
graphical interface for user to view and interact with data.

• The digital interaction is accomplished by using HTML, CSS and
JavaScript.

• Backend of an application is responsible for things like calculations,
logic, database interactions, and performance.

• If we talk about networks, it is used to interact with Nodes and
perform actions such as run commands, gather stats, perform
configurational changes and view output.

14

FRONTEND

HTML

Laravel

Java Script

Django

BACKEND

Bash

PHP

Perl

Ruby

Python

What is Python

• Python is a high-level programming language

• Open source and community driven

• “Batteries Included”

• a standard distribution includes many modules

• Dynamic typed

• Source can be compiled or run just-in-time

• Similar to perl, tcl, ruby

Why Python

Why Python

• Easy to understand and readable language.

• Dominating language at this point of time in Network
Automation space.

• A high level language, don’t have to write a lot of blue codes
to get things done.

• Powerful enough to be used as a convenient tool for daily
parsing tasks, performance management, and configuration.

• It does not have to be compiled, which makes debugging really
fast and easy

17

PYTHON

Object
oriented

Powerful

Extensive
Libraries

Fast

Open Source

Platform
independent

Why Python
• Interpreted

• You run the program straight from the source code.

• Python program Bytecode a platforms native language

• You can just copy over your code to another system and it will auto-magically work! *with python

platform

• Object-Oriented

• Simple and additionally supports procedural programming

• Extensible – easily import other code

• Embeddable –easily place your code in non-python programs

• Extensive libraries

• (i.e. reg. expressions, doc generation, CGI, ftp, web browsers, ZIP, WAV, cryptography, etc...)

(wxPython, Twisted, Python Imaging library)

Why Python

• Simple

• Python is a simple and minimalistic language in nature

• Reading a good python program should be like reading English

• Its Pseudo-code nature allows one to concentrate on the problem rather than the language

• Easy to Learn

• Free & Open source

• Freely distributed and Open source

• Maintained by the Python community

• High Level Language –memory management

• Portable – *runs on anything c code will

Python and Other Languages
• Python is Code-Friendly

The code syntax of Python are simple, concise, and much like English language. This makes coding an interactive and
engaging activity.

• It is Procedural and Object-Oriented Programming Language
Another best thing about Python is that it follows both the Procedure-oriented and Object-Oriented concepts.
Because of this, it is able to provide developers with an environment that no other language concentrating on a single
concept is able to offer.

• It comes with Plenty of Libraries and Frameworks
Python, unlike many other programming languages, avails a wide range of libraries and frameworks that gives
developers an escape from writing code from scratch. And eventually, lower down the time and cost of development.

• Python Enjoys Growing Market Popularity
Above all, Python is one of the trending programming languages with the support of a wider community. Also, its
popularity graph as per Google Trends is growing astronomically - something that is making developers choose
Python over other available options.

Python and Other Languages

• Since 2012, Python has been consistently growing in
popularity, and the trend is likely to continue, if not
increase, in the future

Getting started with Python

Usually a system may have one of the 3 famous Operating System.

• Microsoft Windows

• Apple Mac OS

• Linux Distribution OS

Python development environment is not included in Windows default setup. For Windows 10, a small patch
does the trick where as for earlier versions proper setup is required. Coding could be done on CMD window.

In Mac OS X, Python 2 and its built-in Interactive Development Environment (IDE) comes pre-installed.
Everything could be done in Terminal that includes creating the code and its execution.

Famous Linux Distributions also have Python enabled on default setup. Just as Mac OS, a user can start coding
and execute it in Linux terminal window using CLI.

22

Installing Python

• Linux

• Windows

$sudo apt-get install python3-minimal

Download 64 bit python

• Python on default
download is 32 bit hence
we have to download a
specific release and
version from python
download release
section.

• Hence chose your
respective python version
as per your requirements.

24

What is PIP

• PIP is a package manager for Python packages, or modules.

• You use PIP to install and update packages and modules as per required by your python code.

• You can check if PIP is Installed by typing following command

• C:\Users\Your Name\AppData\Local\Programs\Python\Python36-32\Scripts>pip –version

• If you do not have PIP installed, you can download and install it from,

• https://pypi.org/project/pip/

https://pypi.org/project/pip/

Download Package

• Downloading a package in python is very easy.

• Open the command line interface and tell PIP to download the package you want.

• Make sure to navigate your command line to the location of Python's script directory, and type the

following:

• pip install packageName

Python Development Interfaces

• Python Shell – running 'python' from the Command Line opens this interactive shell

• IDLE – a cross-platform Python development environment

• Spyder- It is a scientific integrated development environment written in Python, available through Anaconda

• PyCharm - a cross-platform IDE, that can be used on Windows, macOS, and Linux.

• Sublime Text 3 - Sublime Text 3 is a code editor which supports many languages including Python

• Visual Studio Code - The editor provides smart code completion based on function definition, imported modules, as well as variable types

• PythonWin – a Windows only interface to Python, It provides a simple graphical interface for editing and running Python programs

• Jupyter- It supports for Numerical simulation, data cleaning machine learning data visualization, and statistical modelling.

• For the exercises, we'll use Spyder, but you can try them all and pick a favorite

IDLE – Integrated Development Environment

• IDLE helps you program in Python by:

• color-coding your program code

• debugging

• auto-indent

• interactive shell

Python Programming Modes

1. Interpreter Mode

2. Normal Mode (Script Mode)

Python Programming Modes

Interactive mode is a command line shell which gives immediate feedback for each statement

The “>>>” indicates that the shell is ready to accept interactive commands

Python Programming Modes

Normal mode is the mode where the scripted (.py) files are run in

the Python interpreter.

Python programs are nothing more than text files, and they may be edited

with a standard text editor program. For example Vim, Nano,

Notepad++,Sublime Text

Instead of having to run one line or block of code at a time, you can type up

all your code in one text file, or script, and run all the code at once.

To run the script, either select “Run” -> “Run Module” or press F5.

One more way of execute the python (.py) file from Linux distribution is

31

Python Shell

• command line shell is one of the most basic
interface for python development.

• You can specifically use this environment for
immediate testing of new libraries installed

32

Python Jupyter

• You can add new python jupyter files

• Major advantage of jupyter is that you can execute
your code line by line or chunk by chunk

• You don’t need to create a separate file for
development and separate shell environment for
outputs

33

Python Spyder

• Allows you to run Python code by cell, line, or file.

• Plot a histogram or time-series, make changes in date
frame.

• It offers automatic code completion and
horizontal/vertical splitting.

• Find and eliminate bottlenecks

• An interactive way to trace each step of Python code
execution.

34

Installing an IDE

• Anaconda is a free and open-source distribution
of the Python programming language
for scientific computing, that aims to
simplify package management and deployment

• Anaconda Navigator is a desktop graphical user
interface (GUI) included in Anaconda
distribution that allows users to launch
applications and manage conda packages,
environments and channels without
using command-line commands.

35

Online Python IDE

• https://repl.it/

36

https://repl.it/

Deeper into Python

Deeper into Python

Variable :

Variables are reserved memory locations to store values.

Numbers | Strings | List | Tuple | Dictionary

Operators :

Operators are the constructs which can manipulate the value of operands.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators

Deeper into Python

Control Flow Tools :

These are the tools which control the logical flow of the program based on the following parameters.

• Value : Basic units of data. Eg- 10,'string'.

• Variable : A name that refers to a value. Eg- var=10, var is the variable.

• Statement : A section of code that represents a command or action.

• Operator : A symbol that performs operations on operands. Eg- * is for multiplication

• Expression : A combination of variables, operators, and values to perform a task.

Types:

• if statement

• while statement

• for statement

• break, continue and pass

Deeper into Python

Iteration:

Computers are often used to automate repetitive tasks. Repeated execution of a set of statements is called
iteration.

Conditionals:

In python conditional statements are features which perform different computations or actions depending
on whether a programmer specified boolean condition evaluates to true or false

Regular Expressions:

A regular expression is a special sequence of characters that helps you match or find other strings or sets of
strings, using a specialized syntax held in a pattern

40

https://en.wikipedia.org/wiki/Boolean_datatype

Deeper into Python

Function:

A function is a block of organized, reusable code that is used to perform a single or multiple related action

Classes:
Python uses classes to keep related things together.

Modules:

A Python module is a Python source file which can expose classes, functions and global variables. A Python
package is a directory of Python module

Repeatable Code (Writing Reusable Code):

programmers like to be lazy. If something has been done before, why should you do it again?

That is what functions cover in python. You've had your code do something and now you want to do it
again. You put that code into a function, and re-use it. You can refer to a function anywhere in your code,
and the computer will always know what you are talking about.

41

Python semantics

• Each statement has its own semantics, the def statement doesn’t get executed immediately like other

statements

• Python uses duck typing, or latent typing

• Allows for polymorphism without inheritance

• This means you can just declare

“somevariable = 67” don’t actually have to declare a type

• print “somevariable = “ + tostring(somevariable)”

strong typing , can’t do operations on objects not defined without explicitly asking the operation to

be done

Sequential Steps

x = 1

print x

x = x + 1

print x

When a program is running, it flows from
one step to the next. We as programmers
set up “paths” for the program to follow.

x = 1
print x
x = x + 1
print x

Conditional Steps
x = 5

X < 10 ?

print 'Smaller'

X > 20 ?

print 'Bigger'

print 'Finis'

Yes

Yes

When a program is running, it flows from
one step to the next step based on the
condition designed.

Repeated Steps

Program:

n = 5
while n > 0 :

print n
n = n – 1

print 'Blastoff!'

Loops (repeated steps) have iteration variables that change
each time through a loop. Often these iteration variables go
through a sequence of numbers.n > 0 ?

n = n -1

No

print 'Blastoff'

Yes

n = 5

print n

Variables Types

• Variables

• Constants

Variables

A variable is a named place in the memory where a programmer can store data and later retrieve the data
using the variable “name”

Programmers get to choose the names of the variables

You can change the contents of a variable in a later statement

x = 12.2
y = 14

Constants

Fixed values such as numbers, letters, and strings are called “constants” - because their value does
not change

Numeric constants are as you expect

String constants use single-quotes (')
or double-quotes (")

>>> print 123
123
>>> print 98.6
98.6
>>> print 'Hello world'
Hello world

Data Types

In Python variables, literals, and constants have a “data type”

In Python variables are “dynamically” typed. In some other languages you
have to explicitly declare the type before you use the variable

In C/C++:

int a;
float b;
a = 5
b = 0.43

In Python:

a = 5
a = “Hello”
a = [5, 2, 1]

Some Data Types in Python

• Integer (Examples: 0, 12, 5, -5)

• Float (Examples: 4.5, 3.99, 0.1)

• String (Examples: “Hi”, “Hello”, “Hi there!”)

• Boolean (Examples: True, False)

• List (Example: [“hi”, “there”, “you”])

• Tuple (Example: (4, 2, 7, 3))

String Data Type

• A string is a sequence of characters

• A string literal uses quotes ‘Hello’ or “Hello”

• For strings, + means “concatenate”

• When a string contains numbers, it is still a string

>>> str1 = "Hello“
>>> str2 = 'there‘
>>> bob = str1 + str2
>>> print bob
Hellothere
>>> str3 = '123‘
>>> str3 = str3 + 1
Traceback (most recent call last): File "<stdin>", line 1, in
<module>TypeError: cannot concatenate 'str' and 'int' objects

Looking Inside Strings

• We can get at any single character in a string using an index
specified in square brackets

• The index value must be an integer and starts at zero

• The index value can be an expression that is computed

>>> fruit = 'banana‘
>>> letter = fruit[1]
>>> print letter
a
>>> n = 3
>>> w = fruit[n - 1]
>>> print w
n

0

b

1

a

2

n

3

a

4

n

5

a

• We can also look at any continuous section of a string
using a colon operator

• The second number is one beyond the end of the slice
- “up to but not including”

• If the second number is beyond the end of the string,
it stops at the end

Slicing Strings

>>> s = 'Monty Python‘
>>> print s[0:4]
Mont
>>> print s[6:7]
P
>>> print s[6:20]
Python

0

M

1

o

2

n

3

t

4

y

5 6

P

7

y

8

t

9

h

10

o

11

n

• If we leave off the first number or the last
number of the slice, it is assumed to be the
beginning or end of the string respectively

Slicing Strings

>>> s = 'Monty Python‘
>>> print s[:2]
Mo
>>> print s[8:]
thon
>>> print s[:]
Monty Python

0

M

1

o

2

n

3

t

4

y

5 6

P

7

y

8

t

9

h

10

o

11

n

String Concatenation

• When the + operator is applied to
strings, it means "concatenation"

>>> a = 'Hello‘
>>> b = a + 'There‘
>>> print b
HelloThere

>>> c = a + ' ' + 'There‘
>>> print c
Hello There

Handling User Input

• We prefer to read data in using strings and then
parse and convert the data as we need

• This gives us more control over error situations
and/or bad user input

• Raw input numbers must be converted from
strings

>>> name = raw_input('Enter:')
Enter:Chuck
>>> print name
Chuck
>>> apple = raw_input('Enter:')
Enter:100
>>> x = apple – 10
Traceback (most recent call last): File "<stdin>", line 1, in
<module>TypeError: unsupported operand type(s) for -: 'str' and 'int‘
>>> x = int(apple) – 10
>>> print x
90

Casting

• Int()

• Float()

• Str()

Python Collections (Arrays)

• There are four collection data types in the Python programming language:

• List is a collection which is ordered and changeable. Allows duplicate members.

• Tuple is a collection which is ordered and unchangeable. Allows duplicate members.

• Set is a collection which is unordered and unindexed. No duplicate members.

• Dictionary is a collection which is unordered, changeable and indexed. No duplicate members.

• When choosing a collection type, it is useful to understand the properties of that type. Choosing the
right type for a particular data set could mean retention of meaning, and, it could mean an increase in
efficiency or security.

59

Lists

• A list is a collection which is ordered and changeable. In Python lists are written with square brackets.

• You access the list items by referring to the index number.

• You can specify a range of indexes by specifying where to start and where to end the range.

• When specifying a range, the return value will be a new list with the specified items.

60

Tuples

• A tuple is a collection which is ordered and unchangeable. In Python tuples are written with round
brackets.

• You can access tuple items by referring to the index number, inside square brackets.

• Negative indexing means beginning from the end.

• You can specify a range of indexes by specifying where to start and where to end the range.

• When specifying a range, the return value will be a new tuple with the specified items

61

Sets

• A set is a collection which is unordered and unindexed. In Python sets are written with curly brackets.

• You cannot access items in a set by referring to an index, since sets are unordered the items has no
index.

• But you can loop through the set items

• Once a set is created, you cannot change its items, but you can add new items.

62

Dictionary

• A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries are
written with curly brackets, and they have keys and values.

• You can access the items of a dictionary by referring to its key name, inside square brackets.

• You can change the value of a specific item by referring to its key name.

• You can loop through a dictionary.

• When looping through a dictionary, the return value are the keys of the dictionary, but there are
methods to return the values as well

63

Operators

• Arithmetic Operators

• Assignment Operators

• Logical Operators

• Membership Operators

Arithmetic Operators

Symbol Operator Name Description

+ Addition Adds the values on either side of the operator and calculate a result.

- Subtraction Subtracts values of right side operand from left side operand.

* Multiplication Multiplies the values on both sides of the operator.

/ Division Divides left side operand with right side operand.

% Modulus It returns the remainder by dividing the left side operand with right side
operand

** Exponent Calculates the exponential power

Assignment Operators

Symbol Operator
Name

Description

= Equal Assigns the values of right side operand to left side
operand.

+= Add AND Adds right side operand value to the left side operand
value and assigns the results to the left operand.

-= Subtract AND Subtracts right side operand value to the left side operand
value and assigns the results to the left operand.

*= Multiply AND Similarly does their respective operations and assigns the
operator value to the left operand.

Logical Operators

Symbol Operator
Name

Description

or Logical OR If any of the two operands are non-zero, then the
condition is true.

and Logical AND If both the operands are true, then the condition is true.

not Logical NOT It is used to reverse the logical state of its operand.

Membership Operators

• In

• The result of this operation becomes True if it finds a value in a specified sequence
and False otherwise.

• Not in

• The result of this operation becomes True if it doesn't find a value in a specified sequence
and False otherwise.

Decision making

• if Statement

• if else Statements

• elif Statements

Decision making

Decision making

Loops

• For

• While

• Nested for

Looping with For

• We could use a for loop to perform geoprocessing tasks on each layer in a list

• We could get a list of features in a feature class and loop over each, checking attributes

• Anything in a sequence or list can be used in a For loop

• Just be sure not to modify the list while looping

Looping with For

• For allows you to loop over a block of code a set number of times

• For is great for manipulating lists:

a = ['cat', 'window', 'defenestrate']
for x in a:

print x, len(x)

Results:
cat 3
window 6
defenestrate 12

For loop

While loop

Nested Loops

Functions in Python

• There are two kinds of functions in Python

• Built-in functions that are provided as part of Python - raw_input(), type(), float(), max(), min(),
int(), str(), …

• Functions (user defined) that we define ourselves and then use

• We treat the built-in function names like reserved words (i.e. we avoid them as variable names)

Definition of Function

• In Python a function is some reusable code that takes arguments(s) as input does some
computation and then returns a result or results

• We define a function using the def reserved word

• We call/invoke the function by using the function name, parenthesis and arguments in an expression

Functions

• Using 'def' statement for defining a function

The range() function

• range() is a built-in function that allows
you to create a sequence of numbers in a
range

• Very useful in “for” loops which are
discussed later in the Iteration chapter

• Takes as an input 1, 2, or 3 arguments.
See examples.

x = range(5)
print x
[0, 1, 2, 3, 4]

x = range(3, 7)
print x
[3, 4, 5, 6]

x = range(10, 1, -2)
print x
[10, 8, 6, 4, 2]

Modules

• Modules are functions and variables defined in separate files

• Items are imported using from or import

• from module import function

• function()

• import module

• module.function()

• Modules are namespaces

• Can be used to organize variable names, i.e.

• atom.position = atom.position - molecule.position

Why use Modules?

• Code reuse

• Routines can be called multiple times within a program

• Routines can be used from multiple programs

• Namespace partitioning

• Group data together with functions used for that data

• Implementing shared services or data

• Can provide global data structure that is accessed by multiple subprograms

OOP Terminology

• class -- a template for building objects

• instance -- an object created from the template (an instance of the class)

• method -- a function that is part of the object and acts on instances directly

• constructor -- special "method" that creates new instances

"Special" methods

• All start and end with __ (two underscores)

• Most are used to emulate functionality of built-in types in user-defined

classes

• e.g. operator overloading

• __add__, __sub__, __mult__, ...

• see python docs for more information

Classes

• A Class is like an object constructor, or a "blueprint" for creating objects.

Defining a Class

class Thing:

"""This class stores an arbitrary object."""

def __init__(self, value):

"""Initialize a Thing."""

self.value = value

def showme(self):

"""Print this object to stdout."""

print "value = %s" % self.value

constructor

method

Using a Class

• t = Thing(10) # calls __init__ method

• t.showme() # prints "value = 10"

• t is an instance of class Thing

• showme is a method of class Thing

• __init__ is the constructor method of class Thing

• when a Thing is created, the __init__ method is called

• Methods starting and ending with __ are "special" methods

Using a Class

print t.value # prints "10"

value is a field of class Thing

t.value = 20 # change the field value

print t.value # prints "20"

File Handling

• Files are manipulated by creating a file object

• f = open("points.txt", "r")

• The file object then has new methods

• print f.readline() # prints line from file

• Files can be accessed to read or write

• f = open("output.txt", "w")

• f.write("Important Output!")

• Files are iterable objects, like lists

File Opening and Attributes

Modes of File opening

r Opens a file for reading only. (It's a default mode.)

w Opens a file for writing. (If a file doesn't exist already, then it creates a new file. Otherwise, it's truncate a file.)

x Opens a file for exclusive creation. (Operation fails if a file does not exist in the location.)

a Opens a file for appending at the end of the file without truncating it. (Creates a new file if it does not exist in the
location.)

t Opens a file in text mode. (It's a default mode.)

b Opens a file in binary mode.

+ Opens a file for updating (reading and writing.)

File Reading / Writing

• Python has a module named “time” to handle time-related tasks. To use functions defined in the module,
we need to import the module first.

• Time function returns the number of seconds passed since epoch

• Ctime function takes seconds passed since epoch as an argument and returns a string representing local
time

• Sleep function suspends (delays) execution of the current thread for the given number of seconds.

95

Time Library

Types of errors

• IndexError is thrown when trying to access an item at an invalid index.

• ModuleNotFoundError is thrown when a module could not be found.

• KeyError is thrown when a key is not found.

• ImportError is thrown when a specified function can not be found.

• TypeError is thrown when an operation or function is applied to an object of an inappropriate type.

• ValueError is thrown when a function's argument is of an inappropriate type.

• NameError is thrown when an object could not be found.

• ZeroDivisionError is thrown when the second operator in the division is zero.

• KeyboardInterrupt is thrown when the user hits the interrupt key (normally Control-C) during the
execution of the program.

96

Exception handling

• try/except

• catch the error and recover from exceptions hoist by programmers or Python itself.

• try/finally

• Whether exception occurs or not, it automatically performs the clean-up action.

• Assert

• triggers an exception conditionally in the code.

Comments

• Single-Line Comment

• Multi-Line Comment

Indentation Rules

• Increase indent after an if statement or for statement (after :)

• Maintain indent to indicate the scope of the block (which lines are affected by the if/for)

• Reduce indent to back to the level of the if statement or for statement to indicate the end of the
block

• Blank lines are ignored - they do not affect indentation

• Comments on a line by themselves are ignored w.r.t. indentation

Indentation and Blocks

• Python uses whitespace and indents to denote blocks of code

• Lines of code that begin a block end in a colon:

• Lines within the code block are indented at the same level

• To end a code block, remove the indentation

• You'll want blocks of code that run only when certain conditions are met

Indentation

Whitespace

• Whitespace is meaningful in Python: especially indentation and placement of newlines.

• Use a newline to end a line of code

Use \ when must go to next line prematurely.

• No braces {} to mark blocks of code, use consistent indentation instead

• First line with less indentation is outside of the block.

• First line with more indentation starts a nested block.

• Colons start of a new block in many constructs, e.g. function definitions, then clauses

Naming Rules

• Names are case sensitive and cannot start with a number.

• They can contain letters, numbers, and underscores.

bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:

and, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if,
import, in, is, lambda, not, or, pass, print, raise, return, try, while

Naming conventions

• The Python community has these recommend-ed naming conventions.

• joined_lower for functions, methods and, attributes.

• joined_lower or ALL_CAPS for constants.

• StudlyCaps for classes.

• camelCase only to conform to pre-existing conventions.

• Attributes: interface, _internal, __private

Accessing Non-Existent Name

Accessing a name before it’s been properly created (by placing it on the left side of an assignment),
raises an error

>>> y

Traceback (most recent call last):

File "<pyshell#16>", line 1, in -toplevel-

y

NameError: name ‘y' is not defined

>>> y = 3

>>> y

3

Keywords

and assert in

del else raise

from if continue

not pass finally

while yield is

as break return

elif except def

global import for

or print lambda

with class try

exec

108

Method Description

lstrip() Returns a left trim version of the string

replace() Returns a string where a specified value is replaced with a specified value

rfind() Searches the string for a specified value and returns the last position of where it was found

rindex() Searches the string for a specified value and returns the last position of where it was found

rsplit() Splits the string at the specified separator, and returns a list

rstrip() Returns a right trim version of the string

split() Splits the string at the specified separator, and returns a list

splitlines() Splits the string at line breaks and returns a list

startswith() Returns true if the string starts with the specified value

strip() Returns a trimmed version of the string

swapcase() Swaps cases, lower case becomes upper case and vice versa

title() Converts the first character of each word to upper case

upper() Converts a string into upper case

zfill() Fills the string with a specified number of 0 values at the beginning

String Methods

https://www.w3schools.com/python/ref_string_lstrip.asp
https://www.w3schools.com/python/ref_string_replace.asp
https://www.w3schools.com/python/ref_string_rfind.asp
https://www.w3schools.com/python/ref_string_rindex.asp
https://www.w3schools.com/python/ref_string_rsplit.asp
https://www.w3schools.com/python/ref_string_rstrip.asp
https://www.w3schools.com/python/ref_string_split.asp
https://www.w3schools.com/python/ref_string_splitlines.asp
https://www.w3schools.com/python/ref_string_startswith.asp
https://www.w3schools.com/python/ref_string_strip.asp
https://www.w3schools.com/python/ref_string_swapcase.asp
https://www.w3schools.com/python/ref_string_title.asp
https://www.w3schools.com/python/ref_string_upper.asp
https://www.w3schools.com/python/ref_string_zfill.asp

109

Method Description

capitalize() Converts the first character to upper case

count() Returns the number of times a specified value occurs in a string

encode() Returns an encoded version of the string

endswith() Returns true if the string ends with the specified value

find() Searches the string for a specified value and returns the position of where it was found

format() Formats specified values in a string

index() Searches the string for a specified value and returns the position of where it was found

isalnum() Returns True if all characters in the string are alphanumeric

isalpha() Returns True if all characters in the string are in the alphabet

isdecimal() Returns True if all characters in the string are decimals

isdigit() Returns True if all characters in the string are digits

islower() Returns True if all characters in the string are lower case

isnumeric() Returns True if all characters in the string are numeric

isspace() Returns True if all characters in the string are whitespaces

istitle() Returns True if the string follows the rules of a title

isupper() Returns True if all characters in the string are upper case

join() Joins the elements of an iterable to the end of the string

lower() Converts a string into lower case

https://www.w3schools.com/python/ref_string_capitalize.asp
https://www.w3schools.com/python/ref_string_count.asp
https://www.w3schools.com/python/ref_string_encode.asp
https://www.w3schools.com/python/ref_string_endswith.asp
https://www.w3schools.com/python/ref_string_find.asp
https://www.w3schools.com/python/ref_string_format.asp
https://www.w3schools.com/python/ref_string_index.asp
https://www.w3schools.com/python/ref_string_isalnum.asp
https://www.w3schools.com/python/ref_string_isalpha.asp
https://www.w3schools.com/python/ref_string_isdecimal.asp
https://www.w3schools.com/python/ref_string_isdigit.asp
https://www.w3schools.com/python/ref_string_islower.asp
https://www.w3schools.com/python/ref_string_isnumeric.asp
https://www.w3schools.com/python/ref_string_isspace.asp
https://www.w3schools.com/python/ref_string_istitle.asp
https://www.w3schools.com/python/ref_string_isupper.asp
https://www.w3schools.com/python/ref_string_join.asp
https://www.w3schools.com/python/ref_string_lower.asp

110

List Methods
Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

111

Sets Methods

Method Description

add() Adds an element to the set

clear() Removes all the elements from the set

copy() Returns a copy of the set

difference() Returns a set containing the difference between two or more sets

difference_update() Removes the items in this set that are also included in another, specified set

discard() Remove the specified item

pop() Removes an element from the set

remove() Removes the specified element

symmetric_difference() Returns a set with the symmetric differences of two sets

symmetric_difference_update() inserts the symmetric differences from this set and another

union() Return a set containing the union of sets

update() Update the set with the union of this set and others

https://www.w3schools.com/python/ref_set_add.asp
https://www.w3schools.com/python/ref_set_clear.asp
https://www.w3schools.com/python/ref_set_copy.asp
https://www.w3schools.com/python/ref_set_difference.asp
https://www.w3schools.com/python/ref_set_difference_update.asp
https://www.w3schools.com/python/ref_set_discard.asp
https://www.w3schools.com/python/ref_set_pop.asp
https://www.w3schools.com/python/ref_set_remove.asp
https://www.w3schools.com/python/ref_set_symmetric_difference.asp
https://www.w3schools.com/python/ref_set_symmetric_difference_update.asp
https://www.w3schools.com/python/ref_set_union.asp
https://www.w3schools.com/python/ref_set_update.asp

Network Integration with Python

• Telnet

• Netmiko

• NAPALM

112

113

GNS3 DEMO

• Download gns3
• https://www.gns3.com/

• Download the GNS3 VM
• Edit/Preference/GNS3VM/download here

114

GNS3 DEMO

https://www.gns3.com/

• Use VMware workstation to import the GNS3VM

• Download the GNS3 appliance

• https://www.gns3.com/marketplace/appliance/network-automation

115

GNS3 DEMO

https://www.gns3.com/marketplace/appliance/network-automation

• Import the appliance

• File/import appliance

116

GNS3 DEMO

• Drag the Network Automation appliance, NAT
Cloud and Switch.

• Modify Network Automation appliance to add
one more Network Adapter

117

GNS3 DEMO

118

Telnet

119

Telnet

In Python telnet is implemented by the module telnetlib which has the Telnet class which has the required
methods to establish the connection

import telnetlib
import time

password = ("cisco")

tn = telnetlib.Telnet("192.168.1.10")
tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("enable \n")
tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("conf t \n")
time.sleep(1)
tn.write("interface loopback10 \n")
time.sleep(1)
tn.write("ip address 10.1.1.1 255.255.255.0 \n")
time.sleep(1)
tn.write("end \n")
time.sleep(1)
tn.write("exit \n")

print tn.read_very_eager()
print("\nThank You")

root@NetworkAutomation:~# python telnet.py

SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)#interface loopback100
SW1(config-if)#ip address 100.1.1.1 255.255.255.0
SW1(config-if)#end
SW1#

120

Telnet

import telnetlib
import time

username = ("cisco")
password = ("cisco")

tn = telnetlib.Telnet("192.168.1.10")
tn.read_until("Username: ")
tn.write(username + "\n")
tn.read_until("Password: ")
tn.write(password + "\n")
tn.write("conf t \n")
time.sleep(1)

for x in range (2,10):
tn.write("vlan " + str(x) + "\n")
time.sleep(1)
tn.write("name vlan_" + str(x) + "\n")
time.sleep(1)

tn.write("end\n")
time.sleep(1)
tn.write("exit\n")

print tn.read_very_eager()
print("\nThank You")

root@NetworkAutomation:~# python telnet_loop.py

SW1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
SW1(config)#vlan 2
SW1(config-vlan)#name vlan_2
SW1(config-vlan)#vlan 3
SW1(config-vlan)#name vlan_3
SW1(config-vlan)#vlan 4
SW1(config-vlan)#name vlan_4
SW1(config-vlan)#vlan 5
SW1(config-vlan)#name vlan_5
SW1(config-vlan)#vlan 6
SW1(config-vlan)#name vlan_6
SW1(config-vlan)#vlan 7
SW1(config-vlan)#name vlan_7
SW1(config-vlan)#vlan 8
SW1(config-vlan)#name vlan_8
SW1(config-vlan)#vlan 9
SW1(config-vlan)#name vlan_9
SW1(config-vlan)#end
SW1#

Thank You

121

Netmiko

122

Netmiko

The purposes of this library are the following:

• Successfully establish an SSH connection to the device

• Simplify the execution of show commands and the retrieval of output data

• Simplify execution of configuration commands including possibly commit actions

Do the above across a broad set of networking vendors and platforms

123

Netmiko

from netmiko import ConnectHandler

ios = {
'device_type': 'cisco_ios',
'ip': '192.168.1.10',
'username': 'cisco',
'password': 'cisco'

}

net_connect = ConnectHandler(**ios)
output = net_connect.send_command('show ip int brief')
print (output)

config_commands = ['int loop 0', 'ip address 1.1.1.1 255.255.255.0']
output = net_connect.send_config_set(config_commands)
print (output)

root@NetworkAutomation:~# python netmiko1.py
Interface IP-Address OK? Method Status Protocol
Ethernet0/0 unassigned YES unset up up
Ethernet0/1 unassigned YES unset up up
Ethernet0/2 unassigned YES unset up up
Ethernet0/3 unassigned YES unset up up
Ethernet1/0 unassigned YES unset up up
Ethernet1/1 unassigned YES unset up up
Ethernet1/2 unassigned YES unset up up
Ethernet1/3 unassigned YES unset up up
Ethernet2/0 unassigned YES unset up up
Ethernet2/1 unassigned YES unset up up
Ethernet2/2 unassigned YES unset up up
Ethernet2/3 unassigned YES unset up up
Ethernet3/0 unassigned YES unset up up
Ethernet3/1 unassigned YES unset up up
Ethernet3/2 unassigned YES unset up up
Ethernet3/3 unassigned YES unset up up
Loopback0 1.1.1.1 YES NVRAM up up
Vlan1 unassigned YES unset administratively down down
Vlan10 192.168.1.10 YES NVRAM up up
config term
Enter configuration commands, one per line. End with CNTL/Z.
IOU1(config)#int loop 0
IOU1(config-if)#ip address 1.1.1.1 255.255.255.0
IOU1(config-if)#end

124

NAPALM

125

NAPALM

NAPALM (Network Automation and Programmability Abstraction Layer with Multivendor support) is a
Python library that implements a set of functions to interact with different network device Operating
Systems using a unified API.

NAPALM supports several methods to connect to the devices, to manipulate configurations or to retrieve
data.

Supported Network Operating Systems:

•Arista EOS
•Cisco IOS
•Cisco IOS-XR
•Cisco NX-OS
•Juniper JunOS

https://napalm.readthedocs.io/en/latest/index.html

https://napalm.readthedocs.io/en/latest/index.html

126

NAPALM

127

NAPALM

128

NAPALM

from napalm import get_network_driver

driver = get_network_driver('ios')

ios = driver('192.168.1.10', 'cisco', 'cisco')

ios.open()

ios_output = ios.get_facts()

print (ios_output)

python napalm1.py

{u'os_version': u'Solaris Software (I86BI_LINUXL2-ADVENTERPRISEK9-M),
Experimental Version 15.1(20130726:213425) [dstivers-j
uly26-2013-team_track 104]',
u'uptime': 2640,
u'interface_list': [u'Ethernet0/0', u'Ethernet0/1', u'Ethernet0/2', u'Ethernet
0/3', u'Ethernet1/0', u'Ethernet1/1', u'Ethernet1/2', u'Ethernet1/3',
u'Ethernet2/0', u'Ethernet2/1', u'Ethernet2/2', u'Ethe
rnet2/3', u'Ethernet3/0', u'Ethernet3/1', u'Ethernet3/2', u'Ethernet3/3',
u'Loopback0',
u'Vlan1', u'Vlan10'],
u'vendor': u'Cisco',
u'serial_number': u'2048001', u'model': u'Unknown', u'hostname': u'IOU1',
u'fqdn': u'IOU1.cisco.com'}

Case I :
Configure Vlan on multiple switches and interfaces simultaneously.

129

Use Case

Thinking Process !

• Problem identification
• Configure Vlan on multiple switches and its interfaces simultaneously.
• Error handling.
• Time mismanagement.

• Implementing a Plan
• Automate vlan creation.
• Use programming language
• Debugging issues
• Determine format of output

• Integration of frontend and backend code.

• Solution
• No more manual configuration
• Error less provisioning
• Efficient utilization of time

• Future Enhancements

• Multi vendor support

130

131

Frontend HTML Page

Frontend HTML Page

132

Backend Python Code

133

Debug session on Network Node

134

What happened when vlan already exists !

135

Enter incorrect vlan !

136

Python for Network Engineers

• The language which is widely opt by Network community and there is a very big gap between
Python and other prevalent languages such as Perl, Ruby, Go as far as the size of the
community.

• For new comers make simple scripts then move to complicated ones.

• There is a vast amount of available network libraries.

• Use various Python tools/modules to handle network devices from several networking vendors:
Cisco (IOS, IOS XE, IOS XR), Juniper, Arista, HP, Avaya.

• Execute CLI commands on several network devices simultaneously.

137

Closing Remarks

• If you are really interested in moving forward, try making your mind and picking up a choice.

• Community is there to support you.

• Start small, celebrate the little things, and build, build, build!

• At the end of the day the true reason for happiness is creating something out of nothing.

13
8

Questions !

A good mentor of mine told me if you want to create a flying car, then start with making some
wheels into a skateboard, enjoy the skateboard and turn that into a bike and so on. – Yad Faeq

https://www.codementor.io/yad

Thank You

139

You will never be 100% ready to change. Don’t wait for the perfect time. It will never come.

Start today !

