
“Network Monitoring and
Management 2.0”

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

SANOG 36

Hervey Allen of the Network Startup Resource Center
www.ws.nsrc.org

http://www.ws.nsrc.org/

A few “Walls of Text”

I promise pictures after these initial slides…

NMM 2.0

Why?

The Why of NMM 2.0
• Finer-grained metrics (“real time network telemetry”)

– Network telemetry streams vs. occasional data pulls
• Scaling (hyper scale)

– Ability to measure monitor hyper-scale projects
– Polling 10,000 devices/containers… that’s hard
– Can have operational impact

• Portability:
– Gather data once, use with multiple tools

NMM 2.0

How?

NMM 2.0
Traditional vs. Present Day Practices

Push vs. Pull or…

Network telemetry / push / passive vs. polling / pull

After this we would start talking about…

Monitoring vs. Observing (o11y)

A wonderful discussion at
https://twitter.com/isotopp/status/1328653624470331392

https://twitter.com/isotopp/status/1328653624470331392

NMM 2.0
Traditional vs. Present Day Practices*

Push vs. Pull or…
Network telemetry / push / passive vs. polling / pull

– Traditional: standards-based like snmp or agents (Nagios,
Check MK)

– Present: some push protocols:
• Cisco compact Google Protocol Buffers
• Google Protocol Buffers
• Json

– Newer agents used with present day network monitoring stacks
• Telegraf, beats, node exporter, Promtail, logstash, etc…

*Sort of… Depends on your needs, resources, goals, etc.

How we store our network metrics (NoSQL vs. Relational)
– Traditional: relational data stores for network metrics

• MySQL, PostgreSQL, SQLite, Oracle, DB2, SQL Server, MariaDB, etc.
– Present: a few time series data stores or NoSQL databases:

• Cassandra
• CouchDB
• ElastiSearch
• InfluxDB
• MongoDB
• Prometheus
• RRDTool (Old school time series data store! Heavily used.)
• TimescaleDB

NMM 2.0
Traditional vs. Present Day Practices

Dashboards vs. Monolithic interfaces to network metrics
– Traditional: Constrained interfaces with less extensibility

• Nagios
• Cacti
• LibreNMS
• SmokePing

– Present: Dashboards massively configurable, harder to get
started (for some)

• Chronograf, Grafana, Kibana*
– *Elastiflow: a flow collection tool è

that use Kibana and Elastisearch
with preconfigured dashboards

NMM 2.0
Traditional vs. Present Day Practices*

Alerting
– Traditional: If available, built-in to the tool. Often minimal.

• SmokePing: alerts.cfg with custom regex language
• Nagios: template based. Very well implemented.
• Cacti: plugins required. Variable.
• LibreNMS: built-in. Not intuitive. Improving over time.

– Present: Often a separate tool or built-in to dashboard tool
• AlertManager (Prometheus solution)
• Grafana (visualizer/analyzer)
• Kapacitor (TICK Stack)
• Kibana (ELK Stack)

Stacks: ELK, TICK, Prometheus. We’ll get to these! J

NMM 2.0
Traditional vs. Present Day Practices

Classical Polling Model

“Network Telemetry” or “Push Model”

The Elastic Stack (ELK)

Present day network measurement “Stacks” are a group of software components
that work together to form a monitoring and management solution.

Typical stacks include (more or less):
• Mechanism(s) to push data to a data store (agents, protocols, both)
• A time series or NoSQL data store
• An engine to query the data store and present results in a graphical format in a dashboard format.
• A built-in or separate alerting component that works with the data store
• Note that many components are interchangeable between stacks

Beats Logstash Elasticsearch Kibana

The TICK Stack

Telegraf InfluxDB Chronograf

Kapacitor

Prometheus

Exporters Prometheus AlertManager

GrafanaRemote
Storage

Node exporter

Typical Relational Store (MySQL)
CREATE TABLE `device_metrics` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`timestamp` int(11) NOT NULL,
`metric1` smallint(6) NOT NULL,
`metric2` int NOT NULL,
`metric3` float NOT NULL DEFAULT '0',
PRIMARY KEY (`id`),
UNIQUE KEY `idposition_UNIQUE` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8

What this looks like
+-----------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+-------------+------+-----+---------+----------------+
id	int(11)	NO	PRI	NULL	auto_increment
timestamp	int(11)	NO		NULL	
metric1	smallint(6)	NO		NULL	
metric2	int(11)	NO		NULL	
metric3	float	NO		0	
+-----------+-------------+------+-----+---------+----------------+

This is moderately efficent vs. putting every metric in to a different
table. But, you still only get one data set per row.

What this looks like with inserted data

+----+------------+---------+------------+---------+
| id | timestamp | metric1 | metric2 | metric3 |
+----+------------+---------+------------+---------+
1	1610232093	29001	1800789199	79.86
2	1610232094	29002	1800789200	79.98
3	1610232095	29003	1800789201	77.67
4	1610232065	29004	1800789223	78.32
5	1610232097	29077	1800789456	80.01
6	1610232098	29232	1800723455	79.11
+----+------------+---------+------------+---------+

SELECT * FROM device_metrics;

Table Growth
+----+------------+---------+------------+---------+
| id | timestamp | metric1 | metric2 | metric3 |
+----+------------+---------+------------+---------+
1	1610232093	29001	1800789199	79.86
2	1610232094	29002	1800789200	79.98
3	1610232095	29003	1800789201	77.67

4	1610232065	29004	1800789223	78.32
5	1610232097	29077	1800789456	80.01
6	1610232098	29232	1800723455	79.11
+----+------------+---------+------------+---------+

ç A new data point every second!
• With “push” model and agents

much more telemetry data.
• Querying and displaying large

numbers of metrics become
inefficent in a relational model.

How to get to this? è
(Grafana)

Inefficiencies of relations…
Inserting, Updating and Selecting, or…

– Adding data
– Changing data
– Getting data

Each row increases
– Index size
– Compute

NoSQL / Time Series data stores allow for very large sets of metrics
in sequence and ability to query these metrics at large scale

Time series data stores / NoSQL
A few ways to store time series data (there are many):

– timestamp, metric, timestamp, metric

or
– timestamp, metric, metric, …, timestamp, metric, metric, …

or
– metric, metric, metric, metric, metric, … timestamp

Per row. Each row can have many columns.
– For example, Cassandra DB can support up to 2 billion

columns per row!
– Nice discussion on what is time series data:

https://www.influxdata.com/what-is-time-series-data/

https://www.influxdata.com/what-is-time-series-data/

NMM 2.0
The Datastores

The Elastic Stack (ELK)

("The BLEK Stack" doesn't sound as good)

Beats Logstash Elasticsearch Kibana

The TICK Stack

Telegraf InfluxDB Chronograf

Kapacitor

Prometheus

Exporters Prometheus AlertManager

GrafanaRemote
Storage

Node exporter

NMM 2.0
The Dashboards

The Elastic Stack (ELK)

Beats Logstash Elasticsearch Kibana

Not sure whether to use Logstash or Beats?

Beats are lightweight data shippers that you install as agents on your servers to send specific
types of operational data to Elasticsearch. Beats have a small footprint and use fewer system
resources than Logstash.

Logstash has a larger footprint, but provides a broad array of input, filter, and output plugins for
collecting, enriching, and transforming data from a variety of sources.

https://www.elastic.co/guide/en/beats/filebeat/current/diff-logstash-beats.html

https://www.elastic.co/guide/en/beats/filebeat/current/diff-logstash-beats.html

The TICK Stack

Telegraf InfluxDB Chronograf

Kapacitor

Prometheus

Exporters Prometheus AlertManager

Grafana*Remote
Storage

Node exporter

*Grafana was designed to work as a UI for
analyzing metrics. As such, it can work with
multiple time-series data stores, including
built-in integrations with Graphite, Prometheus,
InfluxDB, MySQL, PostgreSQL, and Elasticsearch,
and additional data sources using plugins. For
each data source, Grafana has a specific query
editor that is customized for the features and
capabilities that are included in that data source
(https://logz.io/blog/grafana-vs-kibana/).

https://logz.io/blog/grafana-vs-kibana/

NMM 2.0
Alerting

The Elastic Stack (ELK)

Beats Logstash Elasticsearch Kibana

The TICK Stack

Telegraf InfluxDB Chronograf

Kapacitor

TICK stack detail

Prometheus

Exporters Prometheus AlertManager

GrafanaRemote
Storage

Node exporter

Or…è

Prometheus

Exporters Prometheus AlertManager

GrafanaRemote
Storage

Node exporter

Putting it all together
• Presentation of data often requires more resources

– Disk and CPU
– Fine-grained telemetry (seconds or less vs. minutes) == more

data on disk
– Large data stores and complex dashboards can == more CPU

• Regex knowledge
– You figure out what you want to know (some preconfigured

dashboards as well)
– Stack Based. Multiple software projects working together

NMM 2.0
Traditional vs. Present Day Practices

node_exporter

Prometheus

Promtail

Thank you Dean Pemberton for the next 7 slides

node_exporter

Prometheus

Promtail
FL

O
W

S

SY
ST

EM
 M

ET
R

IC
S

&
 A

LE
R

TS

N
ET

W
O

R
K

A

N
D

 A
PP

M

ET
R

IC
S

LO
G

S

node_exporter

Prometheus

Promtail
COLLECT

STORE

VIEW

Takes the following flow protocols
ü Netflow
ü IPFix
ü SFlow

node_exporter

Prometheus

Generate alerts for
reachability and
metrics

Promtail

• Streaming logs from files
• Works with Prometheus
• Kubernetes build available

Thanks!

Questions?

References
• Cisco Telemetry with Google Protocol Buffers

https://blogs.cisco.com/sp/streaming-telemetry-with-google-protocol-buffers
• Cisco Model Driven Telemetry

https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-
networking-solutions/model-driven-telemetry.html

• Graphite
https://graphiteapp.org/

• InfluxDB
https://www.influxdata.com/

• Kafka
https://docs.confluent.io/current/streams-ksql.html

https://blogs.cisco.com/sp/streaming-telemetry-with-google-protocol-buffers
https://www.cisco.com/c/en/us/solutions/service-provider/cloud-scale-networking-solutions/model-driven-telemetry.html
https://graphiteapp.org/
https://www.influxdata.com/
https://docs.confluent.io/current/streams-ksql.html

References
• Logz.io (Information on Elastic Stack, others)

https://logz.io/
• Monitoring vs. Observing

https://twitter.com/isotopp/status/1328653624470331392
• Prometheus

https://prometheus.io/
• Splunk

https://www.splunk.com/
• Tick Stack on CentOS

https://www.digitalocean.com/community/tutorials/how-to-monitor-system-metrics-with-the-tick-stack-
on-centos-7

• TimescaleDB
https://www.timescale.com/

https://logz.io/
https://twitter.com/isotopp/status/1328653624470331392
https://prometheus.io/
https://www.splunk.com/
https://www.digitalocean.com/community/tutorials/how-to-monitor-system-metrics-with-the-tick-stack-on-centos-7
https://www.timescale.com/

References from Dean J

• to docker-compose stacks
– https://github.com/robcowart/elastiflow
– https://github.com/grafana/loki
– https://github.com/nicolargo/docker-influxdb-grafana
– https://github.com/vegasbrianc/prometheus

• Other
– https://peter.run/blog/2019-07-28-visualising-latency-variance-

in-grafana-in-2019/
– https://hveem.no/visualizing-latency-variance-with-grafana

https://github.com/robcowart/elastiflow
https://github.com/grafana/loki
https://github.com/nicolargo/docker-influxdb-grafana
https://github.com/vegasbrianc/prometheus
https://peter.run/blog/2019-07-28-visualising-latency-variance-in-grafana-in-2019/
https://hveem.no/visualizing-latency-variance-with-grafana

