Mining Anomalies in Network-Wide Flow Data

Anukool Lakhina, Ph.D.
with Mark Crovella and Christophe Diot

SANOG-7, Mumbai, January 24, 2006
Network Anomaly Diagnosis

- Am I being attacked?
- Is someone scanning my network?
- Are there worms spreading?
- A sudden traffic shift?
- An equipment outage?
- Something never seen before?

A *general, unsupervised* method for reliably *detecting* and *classifying* network anomalies is needed.
My Talk in One Slide

• A general system to detect & classify anomalies at ISPs and large enterprises

• Central Message: *Network-wide analysis* of NetFlow data can expose many anomalies
 – Detect both operational & malicious incidents

• I am here to seek your feedback 😊
Network-Wide Traffic Analysis

Large Traffic Shifts (Operational Event)

Distributed DOS Attack

Network-Wide Traffic Analysis

Peak rate: 300Mbps; Attack rate ~ 19Mbps/flow

Network-wide traffic

Fri
Sat
Sun

HSTN
LA
IN
NYC

OD flow
Link c
Link d
Link f
Link i

Peak rate: 300Mbps; Attack rate ~ 19Mbps/flow
Collecting Network-Wide Traffic

• Assemble network’s traffic matrix

• Traffic entering at the origin and leaving at the destination

• Use routing to aggregate NetFlow data into OD flows
Networks Evaluated

Abilene research network (Internet2)
• 11 PoPs, 121 OD flows, anonymized, 1/100 sampling, 5 min bins

Géant Europe research network (Dante)
• 22 PoPs, 484 OD flows, not anonymized, 1/1000 sampling, 10 min bins

Sprint European commercial network
• 13 PoPs, 169 OD flows, not anonymized, aggregated, 1/250 sampling, 10 min bins
But, This is Difficult to Analyze!

How do we extract anomalies and normal behavior from noisy, high-dimensional data?
The Subspace Method [LCD:SIGCOMM '04]

• An approach to separate normal & anomalous network-wide traffic
• Designate temporal patterns most common to all the traffic flows as the **normal patterns**
• Remaining temporal patterns form the **anomalous patterns**
• Detect anomalies by statistical thresholds on anomalous patterns
An example operational anomaly

Multihomed customer CALREN reroutes around outage at LOSA
Summary of Anomaly Types Found

[LCD:IMC04]

- Alpha
- DOS
- Scan
- Flash–Crowd
- Point–Multi
- Worm
- Outage
- Ingress–Shift
- Unknown
- False Alarm

- False Alarms: 31
- Unknown: 39
- Traffic Shift Outage Worm Point-Multipoint: 2
- Flash Events: 64
- Scans: 56
- DOS: 44
- Scan: 137

Alpha

DOS

Scan

Flash–Crowd

Point–Multi

Worm

Outage

Ingress–Shift

Unknown

False Alarm
Automatically Classifying Anomalies

[LCD:SIGCOMM05]

• **Goal:** Classify anomalies without restricting yourself to a predefined set of anomalies

• **Approach:** Leverage 4-tuple header fields:
 \texttt{SrcIP, SrcPort, DstIP, DstPort}
 - In particular, measure *dispersion* in fields

• Then, apply off-the-shelf clustering methods
Example of Anomaly Clusters

Summary:
Correctly classified 292 of 296 injected anomalies

Legend:
- Code Red
- Scanning
- Single source
- DOS attack
- Multi source
- DOS attack

\[\tilde{H}(\text{SrcIP}) \quad \text{Concentrated} \quad \text{Dispersed} \]

\[\tilde{H}(\text{DstIP}) \]
Summary

• **Network-Wide Detection:**
 - Broad range of anomalies with low false alarms
 - In papers: Highly sensitive detection, even when anomaly is 1% of background traffic

• **Anomaly Classification:**
 - Feature clusters automatically classify anomalies
 - In papers: clusters expose new anomalies

• **Network-wide data and header analysis are promising for general anomaly diagnosis**
Next steps

• **Ongoing Work:** implementing algorithms in a prototype system

• For more information, see papers & slides at: http://cs-people.bu.edu/anukool/pubs.html

• Your feedback much needed & appreciated!
 – Data, deployment, …